Motion of Sub-Freezing Ice Past Particles, with Applications to Wire Regelation and Frozen Soils
Abstract Existence of a very thin layer of adsorbed water adjacent to particles embedded in ice allows relative motion between ice and particles even at sub-freezing temperatures if there are either applied stresses or macroscopic temperature gradients. Theoretical analysis of such motion involving...
Published in: | Journal of Glaciology |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Cambridge University Press (CUP)
1986
|
Subjects: | |
Online Access: | http://dx.doi.org/10.1017/s0022143000012119 https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000012119 |
Summary: | Abstract Existence of a very thin layer of adsorbed water adjacent to particles embedded in ice allows relative motion between ice and particles even at sub-freezing temperatures if there are either applied stresses or macroscopic temperature gradients. Theoretical analysis of such motion involving a single sphere demonstrates that such motion is dominantly due either to “viscous” deformation in the ice or to mass transport in the liquid layer at temperatures below the nominal pressure melting-point, depending on the ratio of the sphere’s radius to a temperature-dependent “transition radius”. This result should also hold for motion of a cylinder (for which the creeping flow problem has no known analytical solution). Reviewing data on wire regelation at sub-freezing temperatures in the context of this analysis suggests that all “anomalous” data correspond to cases in which wire radii were greater than the transition radius, leading to dominance of ice-deformation effects. Ice motion past very small particles, on the other hand, is essentially accommodated entirely by mass transfer through the liquid layer. This result lends support to the “rigid-ice” model of frost heaving as proposed by R.D. Miller and co-workers, and permits approximate analysis of ice movement through a porous soil. In all cases involving relative motion between ice and particles at sub-freezing temperatures, the existence of macroscopic temperature gradients plays an important role. |
---|