A Theoretical Model of Radiative Transfer in Young Sea Ice

Abstract A four stream discrete-ordinates photometric model including both anisotropic scattering and refraction at the boundaries is presented which treats the case of a floating ice slab. The effects of refraction and reflection on the redistribution of the incident radiation field as it enters th...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Perovich, Donald K., Grenfell, Thomas C.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1982
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000011680
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000011680
Description
Summary:Abstract A four stream discrete-ordinates photometric model including both anisotropic scattering and refraction at the boundaries is presented which treats the case of a floating ice slab. The effects of refraction and reflection on the redistribution of the incident radiation field as it enters the ice are examined in detail. Using one- and two-layer models, theoretical albedos and transmittances are compared to values measured in the laboratory for thin salt ice. With an experimentally determined three-parameter Henyey–Greenstein phase function, comparisons at 650 nm yield single-scattering albedos ranging from 0.95 to 0.9997. The models are then used to compare the effects of diffuse and direct-beam incident radiation, to investigate the dependence of spectral albedo and transmittance on ice thickness, and to determine the influence of very cold and melted surface layers.