Thermodynamics of snow metamorphism due to variations in curvature

Abstract In the absence of imposed temperature gradients, the metamorphism of dry snow is dominated by the slow process of vapor diffusion between surfaces of different radii of curvature. This process is so slow in a seasonal snow cover (where temperatures normally change on the scale of hours or d...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Colbeck, S. C.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1980
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000010832
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000010832
Description
Summary:Abstract In the absence of imposed temperature gradients, the metamorphism of dry snow is dominated by the slow process of vapor diffusion between surfaces of different radii of curvature. This process is so slow in a seasonal snow cover (where temperatures normally change on the scale of hours or days) that vapor migration is usually dominated by the imposed temperature gradient. Thus radius of curvature contributes to but does not control metamorphism except for short periods in very fresh snow. As opposed to dry snow, liquid-saturated snow (i.e. pore space filled by the melt) is metamorphosed by heat flow arising from relatively large temperature differences among the particles. Grain growth in liquid-saturated snow is rapid because of the large temperature differences at nearly constant liquid pressure. In wet snow with low liquid content (2-5% by volume), grain growth is dominated by vapor diffusion (as in dry snow) so grain growth is much slower than under conditions of liquid saturation.