The role of bed separation and friction in sliding over an undeformable bed

Abstract The classic sliding theories usually assume that the sliding motion occurs frictionlessly. However, basal ice is debris-laden and friction exists between the substratum and rock particles embedded in the basal ice. The influence of debris concentration on the sliding process is investigated...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Schweizer, Jürg, Iken, Almut
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1992
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009618
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009618
Description
Summary:Abstract The classic sliding theories usually assume that the sliding motion occurs frictionlessly. However, basal ice is debris-laden and friction exists between the substratum and rock particles embedded in the basal ice. The influence of debris concentration on the sliding process is investigated. The actual conditions where certain types of friction apply are defined, the effect for the case of bed separation due to a subglacial water pressure is studied and consequences for the sliding law are formulated. The numerical modelling of the sliding of an ice mass over an undulating bed, including the effect of both the subglacial water pressure and the friction, is done by using the finite-clement method. Friction, seen as a reduction of the driving shear stress due to gravity, can be included in existing sliding laws which should contain the critical pressure as an important variable. An approximate functional relationship between the sliding velocity, the effective basal shear stress and the subglacial water pressure is given.