Microcracking and the failure of polycrystalline ice under triaxial compression

Abstract Triaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as o...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Kalifa, P., Ouillon, G., Duval, P.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1992
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009606
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009606
Description
Summary:Abstract Triaxial and uniaxial compression tests have been carried out at –10°C on granular ice in order to study the role of microcracking on failure in the ductile-brittle transition zone. In the triaxial tests, the effect of confining pressure and strain rate on the crack population, as well as on strength and strain at the peak stress, was investigated. In the uniaxial tests, we measured the evolution of elastic and non-elastic components of deformation with the stress-strain history. The concept of effective stress, with a single scalar damage variable, was used to calculate the effect of microcracking on the strain components.