Two-Dimensional Spreading and Thickening of Aufeis

Abstract The growth of two-dimensional, or laterally confined (flume), aufeis is shown from laboratory data to depend primarily on seven, independent, dimensionless parameters. During the early, two-dimensional, phase of its growth, aufeis consists of a mixture of ice and water, or ice-water slush,...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Schohl, G.A., Ettema, R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1990
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009412
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009412
Description
Summary:Abstract The growth of two-dimensional, or laterally confined (flume), aufeis is shown from laboratory data to depend primarily on seven, independent, dimensionless parameters. During the early, two-dimensional, phase of its growth, aufeis consists of a mixture of ice and water, or ice-water slush, forming on a frigid base. Its early growth depends on four parameters: those expressing position along aufeis , period of spreading, slope of frigid base over which aufeis forms, and magnitude of heat flux to air from the surface of aufeis relative to latent heat release during freezing. The influences of two of the three remaining parameters, those expressing magnitude of heat flux to air relative to heat flux to frigid base and confined width of aufeis growth, are not felt until after a transition time has passed. The transition time apparently coincides with the beginning of the processes by which the ice-water slush on the surface of aufeis freezes solid. After a slush layer on aufeis begins to freeze solid, a new slush layer forms over its frozen surface. The continuing, cyclic process by which slush layers form and eventually freeze results in the ice laminations that are a feature of aufeis. The influence of the seventh governing parameter, a Reynolds number, cannot be discerned in the laboratory data.