The Kinetic Friction of Snow

Abstract Three components of the kinetic friction of snow are described but only the lubricated component of friction is treated in detail. This component depends upon the thickness of water films which support a slider on snow grains over a small fraction of its area. The thickness of the film decr...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Colbeck, S.C.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1988
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000009096
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000009096
Description
Summary:Abstract Three components of the kinetic friction of snow are described but only the lubricated component of friction is treated in detail. This component depends upon the thickness of water films which support a slider on snow grains over a small fraction of its area. The thickness of the film decreases with ambient temperature in a manner which is sensitive to the thermal conductivity of the slider. The minimum value of friction at any temperature is reached at an intermediate value of speed because friction decreases as the slider first begins to move and the films form but then increases at higher speeds because of the shear resistance. At sub-freezing temperatures a small area in the front part of the slider is dry and the friction is high. Once the water film is formed it increases in thickness towards an equilibrium value which can be very sensitive to slider properties, speed, and temperature. It appears that the mechanisms may be very different for hydrophobic and hydrophilic sliders. From the equations derived here it is clear why friction decreases with repeated passes over the same snow.