On the relationship between neck length and bond radius during compression of snow

Abstract In an earlier study on the variations in micro-structure during large volumetric deformations of snow, the authors observed that, contrary to expectations, the length of necked regions connecting adjacent grains did not necessarily decrease during compression. Rather, there was no discernib...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Brown, R. L., Edens, M. Q.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1991
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000007218
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000007218
Description
Summary:Abstract In an earlier study on the variations in micro-structure during large volumetric deformations of snow, the authors observed that, contrary to expectations, the length of necked regions connecting adjacent grains did not necessarily decrease during compression. Rather, there was no discernible or predictable change in neck length, in some cases increasing and in others decreasing. Further evaluations of the data and an analysis of the mechanics of neck deformation determined that the process is complicated by three different effects: (1) increase in coordination number (number of bonds per grain), (ii) plastic deformation of the neck, and (iii) a geometric effect determined by bond growth and grain geometry. It is found that the first two effects tend to decrease the neck length and that the third produces an increase in mean neck length. A set of coupled differential equations is developed describing the variation of neck length and bond radius, and solved numerically for conditions consistent with the experimental data. Calculated results agree well with the data for the bond radius but the results for the neck length are less satisfactory. Reasons for this lie with difficulty in making accurate measurements of mean neck length from two-dimensional surface-section data and in the criteria for the definition of necks.