The Effects of Basal Melting on the Present Flow of the Ross Ice Shelf, Antarctica

Abstract We use a hybrid finite-element/finite-difference model of ice-shelf flow and heat transfer to investigate the effects of basal melting on the present observed flow of the Ross Ice Shelf, Two hypothetical basal melting scenarios are compared: (i) zero melting everywhere and (ii) melting suff...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: MacAyeal, D.R., Thomas, R.H.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1986
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000006900
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000006900
Description
Summary:Abstract We use a hybrid finite-element/finite-difference model of ice-shelf flow and heat transfer to investigate the effects of basal melting on the present observed flow of the Ross Ice Shelf, Two hypothetical basal melting scenarios are compared: (i) zero melting everywhere and (ii) melting sufficient to balance any large-scale patterns of ice-shelf thickening that would otherwise occur. As a result of the temperature-dependent flow law (which we idealize as having a constant activation energy of 120 kJ mol −1 , a scaling coefficient of 1.3 N m −2 s 1/3 , and an exponent of 3), simulated ice-shelf velocities for the second scenario are reduced by up to 20% below those of the first. Our results support the hypothesis that melting patterns presently maintain ice thickness in steady state and conform to patterns of oceanic circulation presently thought to ventilate the sub-ice cavity. Differences between the simulated and observed velocities are too large in the extreme south-eastern quarter of the ice shelf to permit verification of either basal melting scenario. These differences highlight the need to improve model boundary conditions at points where ice streams feed the ice shelf and where the ice shelf meets stagnant grounded ice.