Subglacial Hydrology for an Ice Sheet Resting on a Deformable Aquifer

Abstract Subglacial hydrology is investigated for an ice sheet where the substrate consists of a deformable aquifer resting on an aquitard. If sliding velocities are low or absent, subglacial melt-water drainage is dominated by drainage through the aquifer to water channels. Drainage along the bed i...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Shoemaker, E. M.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1986
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000006833
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000006833
Description
Summary:Abstract Subglacial hydrology is investigated for an ice sheet where the substrate consists of a deformable aquifer resting on an aquitard. If sliding velocities are low or absent, subglacial melt-water drainage is dominated by drainage through the aquifer to water channels. Drainage along the bed is negligible. Efficient melt-water drainage requires that a system of subglacial water channels exists; otherwise, pore-water pressures will exceed the overburden pressure. In general, aquifer deformation near (away from) the terminus is most likely to occur during the winter (summer). The effect of short-term high channel pressures is, in general, not critical to aquifer deformation because the pressure pulse does not propagate far into the aquifer. (For aquifers of high permeability, short periods of high channel pressures constitute the most critical condition.) Aquifer deformation at the terminus is very likely to occur if the terminus ice slope exceeds tan ϕ , where ϕ is the Coulomb friction angle of the aquifer material. Upwelling of basal melt water near the terminus will normally cause soil dilation if the aquifer has a low permeability (e.g. till). Maximal profiles are computed corresponding to various aquifer materials using channel spacings which provide efficient drainage. (A maximal profile is the highest ice profile which the aquifer can sustain without deformation.) In general, maximal profiles lie well above observed profiles (such as h ( x ) = 3 x 1/2 (m)) except near the terminus. However, if channel spacings are sufficiently large, pore-water pressures are increased and maximal profiles can lie well below h ( x ) = 3 x 1/2 .