On the Numerical Solution of Stefan Problems in Temperate Ice

Abstract Freezing processes in temperate ice consisting of a mixture of pure ice with water inclusions are studied for the case that the initial amount of moisture content is uniform. By introducing a cold source at the center of the ice specimen, the cold front propagates outwards leaving behind pu...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Hutter, Kolumban, Zryd, Amédé, Röthlisberger, Hans
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1990
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000005530
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000005530
Description
Summary:Abstract Freezing processes in temperate ice consisting of a mixture of pure ice with water inclusions are studied for the case that the initial amount of moisture content is uniform. By introducing a cold source at the center of the ice specimen, the cold front propagates outwards leaving behind pure cold ice with a temperature distribution dictated by the exact set-up of the cold source. The speed of the front is directly related to the water content of the temperate ice and depends essentially on the Stefan condition. Three types of initial and boundary conditions are considered and realized in uniaxial, cylindrical, and/or spherical symmetry: (1) a metallic core at a temperature below the freezing point is initially brought into contact with the ice and the system is left free to evolve; (2) the metallic core is kept at constant temperature below freezing; (3) Case (2) is repeated with an insulating air layer between the metallic core and the ice.