A Thermodynamic Model of the Formation, Growth, and Decay of First-Year Sea Ice

Abstract The formulation and application of a onedimensional sea-ice thermodynamic model is presented in this paper. The model’s sensitivity to changes in oceanic and atmospheric parameters is analyzed and compared with previous studies. The model is next applied to three locations in the Arctic: Ca...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Author: Gabison, R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1987
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000005414
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000005414
Description
Summary:Abstract The formulation and application of a onedimensional sea-ice thermodynamic model is presented in this paper. The model’s sensitivity to changes in oceanic and atmospheric parameters is analyzed and compared with previous studies. The model is next applied to three locations in the Arctic: Cambridge Bay, Frobisher Bay, and Alert Inlet to study the model’s ability to simulate the annual cycle of first-year ice. The model’s results are compared with available climatological data and discussed in terms of the main thermodynamic processes, the combined effects of oceanic tides, and of sea-ice deterioration by melting on the break-up of sea ice. It is shown that the model is effective in simulating the climatology of the first-year ice thickness at the three Arctic locations. The study also suggests that improved model performance can be expected from additional research and application of flexural forcing of the ice by waves and tides, and of deterioration of ice strength during the melting process.