Comparison between experiment and computer modelling of plane-strain simple-shear ice deformation

Abstract An examination of both experiments and computer models of polycrystalline ice undergoing a simple shear suggests that there is good agreement. The model has correctly reproduced the deformational and microstructural features caused by glide on (0001) in the ice aggregates. This success is p...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Wilson, C.J. L., Zhang, Y.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1994
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000003786
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003786
Description
Summary:Abstract An examination of both experiments and computer models of polycrystalline ice undergoing a simple shear suggests that there is good agreement. The model has correctly reproduced the deformational and microstructural features caused by glide on (0001) in the ice aggregates. This success is particularly prominent for those ice grains with a lattice orientation suitable for hard or easy glide or kinking, and where there is a sub-horizontal с axis and a larger grain-size. A limitation may be that the model cannot explicitly simulate recrystallization and grain-boundary migration, which are two other important processes operating jointly with glide in experimentally deformed ice. However, through the use of the models, it is possible to show how kinematic factors can control the processes of recrystallization. The localization of recrystallization in the polycrystalline ice aggregate is determined by the stress and strain variations between neighbouring grains.