Thermal effects due to air flow and vapor transport in dry snow

Abstract The thermal effects of air flow forced through a snow sample are investigated numerically. A new method for calculating vapor transport in snow is presented which allows for the determination of the effects of sublimation. In this method, the snow is not assumed to be saturated with water v...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Albert, M. R., Mcgilvary, W. R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1992
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000003683
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000003683
Description
Summary:Abstract The thermal effects of air flow forced through a snow sample are investigated numerically. A new method for calculating vapor transport in snow is presented which allows for the determination of the effects of sublimation. In this method, the snow is not assumed to be saturated with water vapor. Results of the model show very good agreement with analytical and experimental results. The effects of heat conduction, heat advected by the dry air and heat associated with sublimation are examined in a comprehensive theory, and then each effect is isolated to determine its overall contribution. It is demonstrated that the heat transfer associated with vapor transport is significant in the determination of the overall temperature profile of a ventilated snow sample but that the major effects are controlled by the heat carried by the dry air flow through the snow and heat conduction due to the temperatures imposed at the boundaries. The thermal effects of ventilation of snow are more likely to be observed when there is a smaller temperature gradient over the entire snowpack and a greater flow rate of air in the snow than would be observed when there is a greater overall temperature gradient and lesser air-flow rate.