Reconnaissance Study of glacier energy balance in North Greenland, 1993–94

Abstract Reconnaissance energy-balance studies were made for the first time at two sites in North Greenland to compare with conditions in West Greenland. The field experiments were planned to save weight because it is expensive to operate in North Greenland. The larger energy components (incoming ra...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Braithwaite, Roger J., Konzelmann, Thomas, Marty, Christoph, Olesen, Ole B.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1998
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000002586
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000002586
Description
Summary:Abstract Reconnaissance energy-balance studies were made for the first time at two sites in North Greenland to compare with conditions in West Greenland. The field experiments were planned to save weight because it is expensive to operate in North Greenland. The larger energy components (incoming radiation and ablation) were measured for 55 days altogether, and the smaller components were evaluated by indirect methods, e.g. turbulent fluxes are calculated from air temperature, humidity and wind speed, to save the weight of instruments. The energy-balance model is “tuned" by choosing surface roughness and albedo to reduce the mean error between measured ablation and modelled daily melting. The error standard deviation for ablation is only ± 5 kg m −2 d −1 ’, which is much lower than found in West Greenland, due to better instruments and modelling in the present study. Net radiation is the main energy source for melting in North Greenland but ablation is relatively low because sublimation and conductive-heat fluxes use energy that would otherwise be available for melting. There is a strong diurnal variation in ablation, mainly forced by variations in shortwave radiation and reinforced by nocturnal cooling of the ice surface by outgoing longwave radiation and sublimation. The model frequently predicts a frozen glacier surface at night even when air temperatures are positive.