Using the temporal variability of satellite radar altimetric observations to map surface properties of the Antarctic ice sheet

Abstract The problem of measuring surface height and snowpack characteristics from satellite radar altimeter echoes is investigated. In this paper, we perform an analysis of the ERS1 altimeter dataset acquired during a 3 day repeat orbit. The analysis reveals that there are temporal variations in sh...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Legrésy, Benoît, Rémy, Frédérique
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1998
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000002537
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000002537
Description
Summary:Abstract The problem of measuring surface height and snowpack characteristics from satellite radar altimeter echoes is investigated. In this paper, we perform an analysis of the ERS1 altimeter dataset acquired during a 3 day repeat orbit. The analysis reveals that there are temporal variations in shapes of the radar altimeter echo and that these variations are linked to meteorological phenomena. The time- and space-scales over which these variations apply are a few to tens of days and a few hundred kilometres, respectively. This phenomenon, if not accounted for, can create error in the height measurement. A numerical echo model is used to recover snowpack characteristics by taking advantage of the temporal variations of the radar echoes. A map of penetration depth of the radar waves in the Ku band over the Antarctic continent is obtained and suggests that grain-size produces the dominant effect on radar extinction in the snowpack at this frequency. Finally, a procedure is proposed to correct the height measurement within the context of ice-sheet mass-balance survey.