Tools for examining subglacial bed deformation

Abstract Deformation beneath soft-bedded glaciers may be a physical mechanism that contributes to flow instabilities such as surging. If the role of bed deformation is to be understood, a rheological description is required, but the development of a rheology is hampered by a lack of in situ stress a...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Blake, Erik, Clarke, Garry K. C., Gérin, Marc C.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1992
Subjects:
Online Access:http://dx.doi.org/10.1017/s0022143000002264
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143000002264
Description
Summary:Abstract Deformation beneath soft-bedded glaciers may be a physical mechanism that contributes to flow instabilities such as surging. If the role of bed deformation is to be understood, a rheological description is required, but the development of a rheology is hampered by a lack of in situ stress and strain measurements. In this paper, we describe four techniques for measuring subglacial strain. Three of these give continuous strain measurements, a capability that permits calculation of instantaneous strain rates and allows comparison of strain data with other time series. To demonstrate the practicability of the techniques, sample results from three summers of experimentation beneath Trapridge Glacier. Yukon Territory, are presented. The data show that subglacial strain rate can vary in amplitude and polarity on an hourly time-scale,and that the instantaneous strain rate can exceed the mean strain rale by an order of magnitude. Observed negative strain rates suggest extrusive flow within basal sediments.