A new set of basaltic tephras from Southeast Alaska represent key stratigraphic markers for the late Pleistocene

Abstract Three new tephras have been identified in Southeast Alaska. An 8-cm-thick black basaltic tephra with nine discrete normally graded beds is present in cores from a lake on Baker Island. The estimated age of the tephra is 13,492 ± 237 cal yr BP. Although similar in age to the MEd tephra from...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Wilcox, Paul S., Addison, Jason, Fowell, Sarah J., Baichtal, James F., Severin, Ken, Mann, Daniel H.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2019
Subjects:
Online Access:http://dx.doi.org/10.1017/qua.2018.154
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589418001540
Description
Summary:Abstract Three new tephras have been identified in Southeast Alaska. An 8-cm-thick black basaltic tephra with nine discrete normally graded beds is present in cores from a lake on Baker Island. The estimated age of the tephra is 13,492 ± 237 cal yr BP. Although similar in age to the MEd tephra from the adjacent Mt. Edgecumbe volcanic field, this tephra is geochemically distinct. Black basaltic tephras recovered from two additional sites in Southeast Alaska, Heceta Island and the Gulf of Esquibel, are also geochemically distinct from the MEd tephra. The age of the tephra from Heceta Island is 14,609 ± 343 cal yr BP. Whereas the tephras recovered from Baker Island/Heceta Island/Gulf of Esquibel are geochemically distinct from each other, similarities in the ages of these tephras and the MEd tephra suggest a shared eruptive trigger, possibly crustal unloading caused by retreat of the Cordilleran Ice Sheet. The submerged Addington volcanic field on the continental shelf, which may have been subaerially exposed during the late Pleistocene, is a possible source for the Southeast Alaska tephras.