Cold–temperate transition surface and permafrost base (CTS-PB) as an environmental axis in glacier–permafrost relationship, based on research carried out on the Storglaciären and its forefield, northern Sweden

Abstract Here, we present empirical ground penetrating radar (GPR) and electroresistivity tomography data (ERT) to verify the cold-temperate transition surface-permafrost base (CTS-PB) axis theoretical model. The data were collected from Storglaciären, in Tarfala, Northern Sweden, and its forefield....

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Dobiński, Wojciech, Grabiec, Mariusz, Glazer, Michał
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2017
Subjects:
Ice
Online Access:http://dx.doi.org/10.1017/qua.2017.65
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589417000655
Description
Summary:Abstract Here, we present empirical ground penetrating radar (GPR) and electroresistivity tomography data (ERT) to verify the cold-temperate transition surface-permafrost base (CTS-PB) axis theoretical model. The data were collected from Storglaciären, in Tarfala, Northern Sweden, and its forefield. The GPR results show a material relation between the glacial ice and the sediments incorporated in the glacier, and a geophysical relation between the “cold ice” and the “temperate ice” layers. Clearly identifying lateral glacier margins is difficult, as periglacial and glacial environments frequently overlap. In this case, we identified areas showing permafrost aggradation already under the glacier, particularly where the CTS is replaced by the PB surface. This structure appears as a result of the influence of a cold climate over both the glacial and periglacial environments. The results show how these surfaces form a specific continuous environmental axis; thus, both glacial and periglacial areas can be treated uniformly as a specific continuum in the geophysical sense. Similarly, other examples previously described also allow identifying a continuation of permafrost from the periglacial environment onto the glacial base. In addition, the ERT results show the presence of double-layered periglacial permafrost, possibly suggesting a past climatic fluctuation in the study area.