Classifying disequilibrium of small mountain glaciers from patterns of surface elevation change distributions

Abstract The overall trend of rapid retreat of Alpine glaciers contains considerable variability of responses at the scale of individual glaciers. As a step towards a regional assessment of glacier state that allows a detailed differentiation of single glaciers, we explore the potential of a self-or...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Hartl, Lea, Helfricht, Kay, Stocker-Waldhuber, Martin, Seiser, Bernd, Fischer, Andrea
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2021
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2021.90
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143021000903
Description
Summary:Abstract The overall trend of rapid retreat of Alpine glaciers contains considerable variability of responses at the scale of individual glaciers. As a step towards a regional assessment of glacier state that allows a detailed differentiation of single glaciers, we explore the potential of a self-organizing maps (SOM) algorithm to identify and cluster recurring patterns of thickness change at glaciers in western Austria. Using digital elevation models and glacier inventories for three time periods, we compute the frequency distribution of surface elevation change over the area of each glacier in the data set, for each period. The results of the SOM clustering show a distinct pattern shift over time: From 1969 to 1997, surface elevation change occurred at relatively uniform rates across a given glacier. Since 1997, the distribution of surface elevation change at individual glaciers has been far less uniform, indicating accelerated processes of disintegration. Tracking the evolution of individual glaciers throughout the time periods via the clusters highlights both the broader regional trend as well as glaciers that deviate from this trend, e.g. some very small, high elevation glaciers that have reverted to reduced and more uniform volume loss patterns.