Comparison of historical and recent accumulation rates on Abramov Glacier, Pamir Alay

Abstract Glaciers located in western High Mountain Asia (HMA) have shown mass gain or limited mass losses compared to other mountain regions since ~2000. Increases in accumulation may be responsible. Although no contemporary measurements exist to explore this hypothesis, extensive historic measureme...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: Kronenberg, Marlene, Machguth, Horst, Eichler, Anja, Schwikowski, Margit, Hoelzle, Martin
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2020
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2020.103
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143020001033
Description
Summary:Abstract Glaciers located in western High Mountain Asia (HMA) have shown mass gain or limited mass losses compared to other mountain regions since ~2000. Increases in accumulation may be responsible. Although no contemporary measurements exist to explore this hypothesis, extensive historic measurements including firn density, stratigraphy and accumulation rates at ~4400 m a.s.l. on Abramov Glacier, Pamir Alay, provide valuable indications of accumulation changes. Abramov Glacier is located at the northern margin of western HMA. In this study, we assess unique historical firn data of Abramov Glacier from the 1970s to evaluate past firn conditions in this data sparse region. The current firn state is investigated based on a series of in situ measurements including firn cores and ground-penetrating radar measurements performed in 2018. We compare the legacy data with contemporary firn characteristics. Our results indicate a high year-to-year variability, but generally increasing net accumulation during the last 60 years on Abramov Glacier, with 0.84 ± 0.22 m w.e. for 2011–18 compared to 0.68 ± 0.32 m w.e. for 1965–72 and 0.59 ± 0.22 m w.e. for 1970–97. These results from in situ data provide ground truth for the data-sparse western HMA.