Analysis of local ice crystal growth in snow

ABSTRACT The structural evolution of snow under metamorphism is one of the key challenges in snow modeling. The main driving forces for metamorphism are curvature differences and temperature gradients, inducing water vapor transport and corresponding crystal growth, which is detectable by the motion...

Full description

Bibliographic Details
Published in:Journal of Glaciology
Main Authors: KROL, QUIRINE, LÖWE, HENNING
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2016
Subjects:
Online Access:http://dx.doi.org/10.1017/jog.2016.32
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0022143016000320
Description
Summary:ABSTRACT The structural evolution of snow under metamorphism is one of the key challenges in snow modeling. The main driving forces for metamorphism are curvature differences and temperature gradients, inducing water vapor transport and corresponding crystal growth, which is detectable by the motion of the ice/air interface. To provide quantitative means for a microscopic validation of metamorphism models, a VTK-based image analysis method is developed to track the ice/air interface in time-lapse μ CT experiments to measure local interface velocities under both, isothermal and temperature gradient conditions. Using estimates of local temperatures from microstructure-based finite element simulations, a quantitative comparison of measured interface velocities with theoretical expressions is facilitated. For isothermal metamorphism, the data are compared with a kinetics and a diffusion limited growth law. In both cases the data are largely scattered but consistently show a mean curvature dependency of the interface velocity. For temperature gradient metamorphism, we confirm that the main contribution stems from the temperature gradient induced vapor flux, accompanied by effects of mean curvature as a secondary process. The scatter and uncertainties are discussed in view of the present theoretical understanding, the experimental setup and complications such as mechanical deformations.