Long-term river discharge and multidecadal climate variability inferred from varved sediments, southwest Alaska

Abstract Sedimentological analyses of 289 years (AD 1718–2006) of varved sediment from Shadow Bay, southwest Alaska, were used to investigate hydroclimate variability during and prior to the instrumental period. Varve thicknesses relate most strongly to total annual discharge (r 2 = 0.75, n = 43, p...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Kaufman, Claire A., Lamoureux, Scott F., Kaufman, Darrell S.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2011
Subjects:
Online Access:http://dx.doi.org/10.1016/j.yqres.2011.04.005
http://api.elsevier.com/content/article/PII:S0033589411000603?httpAccept=text/xml
http://api.elsevier.com/content/article/PII:S0033589411000603?httpAccept=text/plain
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589400007602
Description
Summary:Abstract Sedimentological analyses of 289 years (AD 1718–2006) of varved sediment from Shadow Bay, southwest Alaska, were used to investigate hydroclimate variability during and prior to the instrumental period. Varve thicknesses relate most strongly to total annual discharge (r 2 = 0.75, n = 43, p < 0.0001). Maximum annual grain size depends most strongly on maximum spring daily discharge (r 2 = 0.63, n = 43, p < 0.0001) and maximum annual daily discharge (r 2 = 0.61, n = 43, p < 0.0001), while varve thickness is poorly correlated with maximum annual grain size (r 2 = 0.004, n = 287, p = 0.33). Relations between varve thickness and annual climate variables (temperature, precipitation, North Pacific (NP) and Pacific Decadal Oscillation (PDO) indices) are insignificant. On multidecadal timescales, however, regime shifts in varve thickness and total annual discharge coincide with shifts in NP and PDO indices. Periods with increased varve thickness and total annual discharge were associated with warm PDO phases and a strengthened Aleutian Low. The varve-inferred record of PDO suggests that any periodicity in the PDO varied over time, and that the early 19th century marked a transition to a more frequent or detectable shifts.