Glacial-Marine Sedimentation and Quaternary Glacial History of Marguerite Bay, Antarctic Peninsula

Abstract Marguerite Bay, situated between the subpolar glacial regime of the northern Antarctic Peninsula and the polar glacial regime of West Antarctica, is ideally located to test various models of glacial and glacial-marine sedimentation and specific scenarios of late Wisconsin ice sheet expansio...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Kennedy, Douglas S., Anderson, John B.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1989
Subjects:
Online Access:http://dx.doi.org/10.1016/0033-5894(89)90008-2
http://api.elsevier.com/content/article/PII:0033589489900082?httpAccept=text/xml
http://api.elsevier.com/content/article/PII:0033589489900082?httpAccept=text/plain
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589400019669
Description
Summary:Abstract Marguerite Bay, situated between the subpolar glacial regime of the northern Antarctic Peninsula and the polar glacial regime of West Antarctica, is ideally located to test various models of glacial and glacial-marine sedimentation and specific scenarios of late Wisconsin ice sheet expansion. Piston cores and single-channel seismic reflection data were collected during the Deep Freeze 85 and 86 expeditions to determine the late Quaternary history of the area. Seismic data in the bay show a rugged seafloor, with numerous deep troughs and a very thin layer of sediment over crystalline basement or older sediments. Glacial erosion is important in modifying existing features, although the ultimate repository of the eroded material is not known; it is not found within the bay. The piston cores are topped by diatomaceous muds, which are underlain by terrigenous muds and muddy gravels that imply deposition beneath an ice shelf. Basal tills were penetrated at three sites, reflecting deposition by a grounded marine ice sheet. A reconstruction of the glacial history of Marguerite Bay since the last glacial maximum shows grounded ice filling the bay in late Wisconsin time. Rising sea level caused an uncoupling of the ice sheet and slow retreat of an ice shelf throughout the Holocene.