Late-Glacial and Postglacial Vegetational History of the Berkshires, Western Massachusetts

A pollen analytical investigation of the sediments of Berry Pond, Berkshire County, Massachusetts, has demonstrated a sequence of pollen assemblage zones similar to those detected elsewhere in New England. From about 13,000 to 12,000 yr B.P. the vegetation of the region was treeless, probably tundra...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Author: Whitehead, Donald R.
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 1979
Subjects:
Online Access:http://dx.doi.org/10.1016/0033-5894(79)90033-4
http://api.elsevier.com/content/article/PII:0033589479900334?httpAccept=text/xml
http://api.elsevier.com/content/article/PII:0033589479900334?httpAccept=text/plain
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589400030386
Description
Summary:A pollen analytical investigation of the sediments of Berry Pond, Berkshire County, Massachusetts, has demonstrated a sequence of pollen assemblage zones similar to those detected elsewhere in New England. From about 13,000 to 12,000 yr B.P. the vegetation of the region was treeless, probably tundra. By 11,500 yr tundra had been replaced by open boreal forest. Closed boreal forest became dominant by 10,500 yr. Boreal forests were replaced by mixed coniferous and deciduous forests with much white pine about 9600 yr ago. A “northern hardwoods” complex with much hemlock, beech, and sugar maple succeeded the mixed forests 8600 yr ago. Hemlock declined very rapidly approximately 4800 yr ago and was replaced by birch, oak, beech, ash, and red maple. This decline may have been biologically rather than climatically induced. There is a slight maximum of pine (much of it pitch pine) from 4100 to 2600 yr ago, perhaps indicative of warmer and/or drier conditions. There were slight changes in the forests about 1600 yr ago as chestnut immigrated and spruce and larch increased slightly. European land clearance and subsequent land abandonment are detectable in the uppermost levels.