Ancient Meteorite Finds and the Earth's Surface Environment

Abstract The flux of meteorites to the Earth over the last 50,000 yr has remained approximately constant. Most meteorites that fall in temperate or tropical areas are destroyed on a time scale which is short compared to the rate of infall; however, in arid regions (both “hot” deserts and the “cold”...

Full description

Bibliographic Details
Published in:Quaternary Research
Main Authors: Bland, Philip A., Bevan, Alex W. R., Jull, A. J. Tim
Format: Article in Journal/Newspaper
Language:English
Published: Cambridge University Press (CUP) 2000
Subjects:
Online Access:http://dx.doi.org/10.1006/qres.1999.2106
http://api.elsevier.com/content/article/PII:S0033589499921063?httpAccept=text/xml
http://api.elsevier.com/content/article/PII:S0033589499921063?httpAccept=text/plain
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/S0033589400030593
Description
Summary:Abstract The flux of meteorites to the Earth over the last 50,000 yr has remained approximately constant. Most meteorites that fall in temperate or tropical areas are destroyed on a time scale which is short compared to the rate of infall; however, in arid regions (both “hot” deserts and the “cold” desert of Antarctica) weathering is slower and accumulations of meteorites may occur. The initial composition for many meteorite groups is well known from modern falls, and terrestrial ages may be established from analyses of the abundance of cosmogenic radionuclides, providing an absolute chronology for recording terrestrial processes. As samples are falling constantly, and are distributed approximately evenly over the Earth, meteorites may thus be thought of as an appropriate “standard sample” for studying aspects of the terrestrial surface environment. Studies involving 14 C and 36 Cl terrestrial ages of meteorites, 57 Fe Mössbauer spectroscopy (to quantify the degree of oxidation in samples), stable isotopes, and determination of halogen abundances are yielding information on the terrestrial history of meteorites: (i) terrestrial age and oxidation-frequency distributions for populations of samples allow the ages of surfaces to be estimated; (ii) differences in the weathering rate of samples between sites allows constraints to be imposed on the effect of climate on rock weathering rates; (iii) carbon isotopic compositions of generations of carbonate growth within meteorites allows, in some cases, temperatures of formation of carbonates to be estimated; (iv) structure in the oxidation–terrestrial age distribution for meteorites from some arid accumulation sites (specifically, the Nullarbor of Australia) appears to be linked to previous humid/arid cycles; (v) meteorite accumulations in Antarctica have been used to constrain aspects of the Quaternary evolution of the ice sheet, and terrestrial age and oxidation data have been used to constrain ice flow.