Multisubstrate Isotope Labeling and Metagenomic Analysis of Active Soil Bacterial Communities

ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacte...

Full description

Bibliographic Details
Published in:mBio
Main Authors: Verastegui, Y., Cheng, J., Engel, K., Kolczynski, D., Mortimer, S., Lavigne, J., Montalibet, J., Romantsov, T., Hall, M., McConkey, B. J., Rose, D. R., Tomashek, J. J., Scott, B. R., Charles, T. C., Neufeld, J. D.
Other Authors: Bailey, Mark
Format: Article in Journal/Newspaper
Language:English
Published: American Society for Microbiology 2014
Subjects:
Online Access:http://dx.doi.org/10.1128/mbio.01157-14
https://journals.asm.org/doi/pdf/10.1128/mBio.01157-14
Description
Summary:ABSTRACT Soil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon ( 12 C) or stable-isotope-labeled ( 13 C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa, Actinomycetales (Salinibacterium), Rhizobiales (Devosia), Rhodospirillales (Telmatospirillum), and Caulobacterales ( Phenylobacterium and Asticcacaulis ) were bacterial indicator species for the heavy substrates and soils tested. Both Actinomycetales and Caulobacterales (Phenylobacterium) were associated with metabolism of cellulose, and Alphaproteobacteria were associated with the metabolism of arabinose; members of the order Rhizobiales were strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the 13 C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes. IMPORTANCE The ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This is arguably the most powerful ...