Evaluation of F-Specific RNA Bacteriophage as a Candidate Human Enteric Virus Indicator for Bivalve Molluscan Shellfish

ABSTRACT Escherichia coli is a widely utilized indicator of the sanitary quality of bivalve molluscan shellfish sold for human consumption. However, it is now well documented that shellfish that meet the E. coli standards for human consumption may contain human enteric viruses that cause gastroenter...

Full description

Bibliographic Details
Published in:Applied and Environmental Microbiology
Main Authors: Doré, William J., Henshilwood, Kathleen, Lees, David N.
Format: Article in Journal/Newspaper
Language:English
Published: American Society for Microbiology 2000
Subjects:
Online Access:http://dx.doi.org/10.1128/aem.66.4.1280-1285.2000
https://journals.asm.org/doi/pdf/10.1128/AEM.66.4.1280-1285.2000
Description
Summary:ABSTRACT Escherichia coli is a widely utilized indicator of the sanitary quality of bivalve molluscan shellfish sold for human consumption. However, it is now well documented that shellfish that meet the E. coli standards for human consumption may contain human enteric viruses that cause gastroenteritis and hepatitis. In this study we investigated using F-specific RNA bacteriophage (FRNA bacteriophage) to indicate the likely presence of such viruses in shellfish sold for consumption. FRNA bacteriophage and E. coli levels were determined over a 2-year period for oysters ( Crassostrea gigas ) harvested from four commercial sites chosen to represent various degrees of sewage pollution. Three sites were classified as category B sites under the relevant European Community (EC) Directive (91/492), which required purification (depuration) of oysters from these sites before sale. One site was classified as a category A site, and oysters from this site could be sold directly without further processing. Samples were tested at the point of sale following commercial processing and packaging. All of the shellfish complied with the mandatory EC E. coli standard (less than 230 per 100 g of shellfish flesh), and the levels of contamination for more than 90% of the shellfish were at or below the level of sensitivity of the assay (20 E. coli MPN per 100 g), which indicated good quality based on this criterion. In contrast, FRNA bacteriophage were frequently detected at levels that exceeded 1,000 PFU per 100 g. High levels of FRNA bacteriophage contamination were strongly associated with harvest area fecal pollution and with shellfish-associated disease outbreaks. Interestingly, FRNA bacteriophage contamination exhibited a marked seasonal trend that was consistent with the trend of oyster-associated gastroenteritis in the United Kingdom. The correlation between FRNA bacteriophage contamination and health risk was investigated further by using a reverse transcription-PCR assay for Norwalk-like virus (NLV). NLV contamination of ...