Geographic Impact on Genomic Divergence as Revealed by Comparison of Nine Citromicrobial Genomes

ABSTRACT Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium , widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium st...

Full description

Bibliographic Details
Published in:Applied and Environmental Microbiology
Main Authors: Zheng, Qiang, Liu, Yanting, Jeanthon, Christian, Zhang, Rui, Lin, Wenxin, Yao, Jicheng, Jiao, Nianzhi
Other Authors: Kivisaar, M.
Format: Article in Journal/Newspaper
Language:English
Published: American Society for Microbiology 2016
Subjects:
Online Access:http://dx.doi.org/10.1128/aem.02495-16
https://journals.asm.org/doi/pdf/10.1128/AEM.02495-16
Description
Summary:ABSTRACT Aerobic anoxygenic phototrophic bacteria (AAPB) are thought to be important players in oceanic carbon and energy cycling in the euphotic zone of the ocean. The genus Citromicrobium , widely found in oligotrophic oceans, is a member of marine alphaproteobacterial AAPB. Nine Citromicrobium strains isolated from the South China Sea, the Mediterranean Sea, or the tropical South Atlantic Ocean were found to harbor identical 16S rRNA sequences. The sequencing of their genomes revealed high synteny in major regions. Nine genetic islands (GIs) involved mainly in type IV secretion systems, flagellar biosynthesis, prophage, and integrative conjugative elements, were identified by a fine-scale comparative genomics analysis. These GIs played significant roles in genomic evolution and divergence. Interestingly, the coexistence of two different photosynthetic gene clusters (PGCs) was not only found in the analyzed genomes but also confirmed, for the first time, to our knowledge, in environmental samples. The prevalence of the coexistence of two different PGCs may suggest an adaptation mechanism for Citromicrobium members to survive in the oceans. Comparison of genomic characteristics (e.g., GIs, average nucleotide identity [ANI], single-nucleotide polymorphisms [SNPs], and phylogeny) revealed that strains within a marine region shared a similar evolutionary history that was distinct from that of strains isolated from other regions (South China Sea versus Mediterranean Sea). Geographic differences are partly responsible for driving the observed genomic divergences and allow microbes to evolve through local adaptation. Three Citromicrobium strains isolated from the Mediterranean Sea diverged millions of years ago from other strains and evolved into a novel group. IMPORTANCE Aerobic anoxygenic phototrophic bacteria are a widespread functional group in the upper ocean, and their abundance could be up to 15% of the total heterotrophic bacteria. To date, a great number of studies display AAPB biogeographic distribution ...