Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects

The effects of melting heat transfer, thermal radiation, and porous medium on steady, 2-D, viscous, incompressible, magneto hydrodynamic nano-fluid flow concluded a linearly extending sheet in the occurrence of viscous dissipation, as well as first and subsequent order slip effects, were always cons...

Full description

Bibliographic Details
Published in:Journal of Nanofluids
Main Authors: Narender, P., Goud, T. Ramakrishna
Format: Article in Journal/Newspaper
Language:English
Published: American Scientific Publishers 2023
Subjects:
Online Access:http://dx.doi.org/10.1166/jon.2023.2040
https://www.ingentaconnect.com/content/asp/jon/2023/00000012/00000006/art00011
id crascipubl:10.1166/jon.2023.2040
record_format openpolar
spelling crascipubl:10.1166/jon.2023.2040 2024-02-11T10:07:55+01:00 Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects Narender, P. Goud, T. Ramakrishna 2023 http://dx.doi.org/10.1166/jon.2023.2040 https://www.ingentaconnect.com/content/asp/jon/2023/00000012/00000006/art00011 en eng American Scientific Publishers Journal of Nanofluids volume 12, issue 6, page 1566-1576 ISSN 2169-432X Fluid Flow and Transfer Processes Mechanical Engineering journal-article 2023 crascipubl https://doi.org/10.1166/jon.2023.2040 2024-01-16T14:55:23Z The effects of melting heat transfer, thermal radiation, and porous medium on steady, 2-D, viscous, incompressible, magneto hydrodynamic nano-fluid flow concluded a linearly extending sheet in the occurrence of viscous dissipation, as well as first and subsequent order slip effects, were always considered in this numerical research. In this research, appropriate similarity variables were employed to turn the controlling nonlinear partial differentiated equations hooked on a system of linked nonlinear ordinary differential comparisons that are mathematically explained using the Runge-Kutta approach with a firing scheme. The consequence of several pertinent limitations on rapidity profiles, temperature profiles, and attentiveness profiles is graphically explored also thoroughly interpreted. In this work, images and tables were utilized to represent various progressive values of non-dimensionalized parameters, while numerical data was employed to examine variations in skin-friction, heat, and mass transmission charges. The present study of my observation compared with previous studies in a limiting case. A reliable agreement between the numeric values is achieved here. The velocity profiles in this issue decrease as the values of the Suction/Injection fluid parameter as well as the Magnetic field limitation growth. Temperature profiles rise as the impacts of thermophoresis and Brownian motion become stronger. When the value of the Dufour number rises, so do the temperature profiles. Thermophoresis parameter expansions results in enhanced nanoparticle volume concentration distributions, whereas Brownian motion effects produces the opposite effects. As the Soret number parameter increases, so do the concentration profiles. This melting heat transfer study work includes numerous industrial applications, including casting, welding, and magma solidification, permafrost melting and ground thawing, and so on. Article in Journal/Newspaper permafrost American Scientific Publishers Journal of Nanofluids 12 6 1566 1576
institution Open Polar
collection American Scientific Publishers
op_collection_id crascipubl
language English
topic Fluid Flow and Transfer Processes
Mechanical Engineering
spellingShingle Fluid Flow and Transfer Processes
Mechanical Engineering
Narender, P.
Goud, T. Ramakrishna
Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
topic_facet Fluid Flow and Transfer Processes
Mechanical Engineering
description The effects of melting heat transfer, thermal radiation, and porous medium on steady, 2-D, viscous, incompressible, magneto hydrodynamic nano-fluid flow concluded a linearly extending sheet in the occurrence of viscous dissipation, as well as first and subsequent order slip effects, were always considered in this numerical research. In this research, appropriate similarity variables were employed to turn the controlling nonlinear partial differentiated equations hooked on a system of linked nonlinear ordinary differential comparisons that are mathematically explained using the Runge-Kutta approach with a firing scheme. The consequence of several pertinent limitations on rapidity profiles, temperature profiles, and attentiveness profiles is graphically explored also thoroughly interpreted. In this work, images and tables were utilized to represent various progressive values of non-dimensionalized parameters, while numerical data was employed to examine variations in skin-friction, heat, and mass transmission charges. The present study of my observation compared with previous studies in a limiting case. A reliable agreement between the numeric values is achieved here. The velocity profiles in this issue decrease as the values of the Suction/Injection fluid parameter as well as the Magnetic field limitation growth. Temperature profiles rise as the impacts of thermophoresis and Brownian motion become stronger. When the value of the Dufour number rises, so do the temperature profiles. Thermophoresis parameter expansions results in enhanced nanoparticle volume concentration distributions, whereas Brownian motion effects produces the opposite effects. As the Soret number parameter increases, so do the concentration profiles. This melting heat transfer study work includes numerous industrial applications, including casting, welding, and magma solidification, permafrost melting and ground thawing, and so on.
format Article in Journal/Newspaper
author Narender, P.
Goud, T. Ramakrishna
author_facet Narender, P.
Goud, T. Ramakrishna
author_sort Narender, P.
title Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
title_short Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
title_full Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
title_fullStr Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
title_full_unstemmed Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects
title_sort melting heat transfer on magnetohydrodynamics-nanofluid boundary layer flow past a stretching sheet: thermal radiation and viscous dissipation effects
publisher American Scientific Publishers
publishDate 2023
url http://dx.doi.org/10.1166/jon.2023.2040
https://www.ingentaconnect.com/content/asp/jon/2023/00000012/00000006/art00011
genre permafrost
genre_facet permafrost
op_source Journal of Nanofluids
volume 12, issue 6, page 1566-1576
ISSN 2169-432X
op_doi https://doi.org/10.1166/jon.2023.2040
container_title Journal of Nanofluids
container_volume 12
container_issue 6
container_start_page 1566
op_container_end_page 1576
_version_ 1790606763820580864