Melting Heat Transfer on Magnetohydrodynamics-Nanofluid Boundary Layer Flow Past a Stretching Sheet: Thermal Radiation and Viscous Dissipation Effects

The effects of melting heat transfer, thermal radiation, and porous medium on steady, 2-D, viscous, incompressible, magneto hydrodynamic nano-fluid flow concluded a linearly extending sheet in the occurrence of viscous dissipation, as well as first and subsequent order slip effects, were always cons...

Full description

Bibliographic Details
Published in:Journal of Nanofluids
Main Authors: Narender, P., Goud, T. Ramakrishna
Format: Article in Journal/Newspaper
Language:English
Published: American Scientific Publishers 2023
Subjects:
Online Access:http://dx.doi.org/10.1166/jon.2023.2040
https://www.ingentaconnect.com/content/asp/jon/2023/00000012/00000006/art00011
Description
Summary:The effects of melting heat transfer, thermal radiation, and porous medium on steady, 2-D, viscous, incompressible, magneto hydrodynamic nano-fluid flow concluded a linearly extending sheet in the occurrence of viscous dissipation, as well as first and subsequent order slip effects, were always considered in this numerical research. In this research, appropriate similarity variables were employed to turn the controlling nonlinear partial differentiated equations hooked on a system of linked nonlinear ordinary differential comparisons that are mathematically explained using the Runge-Kutta approach with a firing scheme. The consequence of several pertinent limitations on rapidity profiles, temperature profiles, and attentiveness profiles is graphically explored also thoroughly interpreted. In this work, images and tables were utilized to represent various progressive values of non-dimensionalized parameters, while numerical data was employed to examine variations in skin-friction, heat, and mass transmission charges. The present study of my observation compared with previous studies in a limiting case. A reliable agreement between the numeric values is achieved here. The velocity profiles in this issue decrease as the values of the Suction/Injection fluid parameter as well as the Magnetic field limitation growth. Temperature profiles rise as the impacts of thermophoresis and Brownian motion become stronger. When the value of the Dufour number rises, so do the temperature profiles. Thermophoresis parameter expansions results in enhanced nanoparticle volume concentration distributions, whereas Brownian motion effects produces the opposite effects. As the Soret number parameter increases, so do the concentration profiles. This melting heat transfer study work includes numerous industrial applications, including casting, welding, and magma solidification, permafrost melting and ground thawing, and so on.