Three-phase equilibria of hydrates from computer simulation. I. Finite-size effects in the methane hydrate

Clathrate hydrates are vital in energy research and environmental applications. Understanding their stability is crucial for harnessing their potential. In this work, we employ direct coexistence simulations to study finite-size effects in the determination of the three-phase equilibrium temperature...

Full description

Bibliographic Details
Published in:The Journal of Chemical Physics
Main Authors: Blazquez, S., Algaba, J., Míguez, J. M., Vega, C., Blas, F. J., Conde, M. M.
Other Authors: Ministerio de Ciencia e Innovación
Format: Article in Journal/Newspaper
Language:English
Published: AIP Publishing 2024
Subjects:
Online Access:http://dx.doi.org/10.1063/5.0201295
https://pubs.aip.org/aip/jcp/article-pdf/doi/10.1063/5.0201295/19911080/164721_1_5.0201295.pdf
Description
Summary:Clathrate hydrates are vital in energy research and environmental applications. Understanding their stability is crucial for harnessing their potential. In this work, we employ direct coexistence simulations to study finite-size effects in the determination of the three-phase equilibrium temperature (T3) for methane hydrates. Two popular water models, TIP4P/Ice and TIP4P/2005, are employed, exploring various system sizes by varying the number of molecules in the hydrate, liquid, and gas phases. The results reveal that finite-size effects play a crucial role in determining T3. The study includes nine configurations with varying system sizes, demonstrating that smaller systems, particularly those leading to stoichiometric conditions and bubble formation, may yield inaccurate T3 values. The emergence of methane bubbles within the liquid phase, observed in smaller configurations, significantly influences the behavior of the system and can lead to erroneous temperature estimations. Our findings reveal finite-size effects on the calculation of T3 by direct coexistence simulations and clarify the system size convergence for both models, shedding light on discrepancies found in the literature. The results contribute to a deeper understanding of the phase equilibrium of gas hydrates and offer valuable information for future research in this field.