Invited Review Article: IceCube: An instrument for neutrino astronomy

Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km3 of deep and ultratransparent Antar...

Full description

Bibliographic Details
Published in:Review of Scientific Instruments
Main Authors: Halzen, Francis, Klein, Spencer R.
Format: Article in Journal/Newspaper
Language:English
Published: AIP Publishing 2010
Subjects:
Online Access:http://dx.doi.org/10.1063/1.3480478
https://pubs.aip.org/aip/rsi/article-pdf/doi/10.1063/1.3480478/15900340/081101_1_online.pdf
Description
Summary:Neutrino astronomy beyond the Sun was first imagined in the late 1950s; by the 1970s, it was realized that kilometer-scale neutrino detectors were required. The first such instrument, IceCube, is near completion and taking data. The IceCube project transforms 1 km3 of deep and ultratransparent Antarctic ice into a particle detector. A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light emitted by secondary particles produced when neutrinos interact with nuclei in the ice. Each optical sensor is a complete data acquisition system including a phototube, digitization electronics, control and trigger systems, and light-emitting diodes for calibration. The light patterns reveal the type (flavor) of neutrino interaction and the energy and direction of the neutrino, making neutrino astronomy possible. The scientific missions of IceCube include such varied tasks as the search for sources of cosmic rays, the observation of galactic supernova explosions, the search for dark matter, and the study of the neutrinos themselves. These reach energies well beyond those produced with accelerator beams. The outline of this review is as follows: neutrino astronomy and kilometer-scale detectors, high-energy neutrino telescopes: methodologies of neutrino detection, IceCube hardware, high-energy neutrino telescopes: beyond astronomy, and future projects.