Enzymatically catalyzed furan-based copolyesters containing dilinoleic diol as a building block

An environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in di...

Full description

Bibliographic Details
Main Authors: Sokołowska, Martyna, Nowak-Grzebyta, Jagoda, Stachowska, Ewa, Miądlicki, Piotr, Zdanowicz, Magdalena, Michalkiewicz, Beata, El Fray, Miroslawa
Other Authors: Horizon 2020 Framework Programme
Format: Other/Unknown Material
Language:unknown
Published: American Chemical Society (ACS) 2023
Subjects:
Online Access:http://dx.doi.org/10.26434/chemrxiv-2023-k7xf5-v5
https://chemrxiv.org/engage/api-gateway/chemrxiv/assets/orp/resource/item/6488c327e64f843f41bd2eec/original/enzymatically-catalyzed-furan-based-copolyesters-containing-dilinoleic-diol-as-a-building-block.pdf
Description
Summary:An environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in diphenyl ether using Candida antarctica lipase B (CAL-B) as biocatalyst where dimethyl 2,5-furandicarboxylate (DMFDCA), α,ω-aliphatic linear diols (α,ω-ALD), and bio-based dilinoleic diol (DLD) were used as the starting materials. Nuclear magnetic spectroscopy (1H and 13C NMR), Fourier transform spectroscopy (FTIR) and size exclusion chromatography (SEC) were used to analyze the resulting copolymers. Additionally, crystallization behavior and thermal properties were studied using X-ray diffraction (XRD), digital holographic microscopy (DHM), and differential scanning microscopy (DSC). Finally, oxygen transmission rates (OTR) and dynamic mechanical analysis (DMTA) of furan-based copolyesters indicated their potential for medical packaging.