Carbon Isotopic Evidence for Methane Hydrate Instability During Quaternary Interstadials

Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, s...

Full description

Bibliographic Details
Published in:Science
Main Authors: Kennett, James P., Cannariato, Kevin G., Hendy, Ingrid L., Behl, Richard J.
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science (AAAS) 2000
Subjects:
Online Access:http://dx.doi.org/10.1126/science.288.5463.128
https://www.science.org/doi/pdf/10.1126/science.288.5463.128
Description
Summary:Large (about 5 per mil) millennial-scale benthic foraminiferal carbon isotopic oscillations in the Santa Barbara Basin during the last 60,000 years reflect widespread shoaling of sedimentary methane gradients and increased outgassing from gas hydrate dissociation during interstadials. Furthermore, several large, brief, negative excursions (up to –6 per mil) coinciding with smaller shifts (up to –3 per mil) in depth-stratified planktonic foraminiferal species indicate massive releases of methane from basin sediments. Gas hydrate stability was modulated by intermediate-water temperature changes induced by switches in thermohaline circulation. These oscillations were likely widespread along the California margin and elsewhere, affecting gas hydrate instability and contributing to millennial-scale atmospheric methane oscillations.