Quaternary Deepwater Paleoceanography

During the past decade, geochemical paleoceanographers have begun to explore the changes in the circulation of the deep ocean that occurred during the glacial-interglacial cycles of the earth's recent history. The deep ocean was significantly colder during the glacial maximum. The distributions...

Full description

Bibliographic Details
Published in:Science
Main Author: Boyle, Edward A.
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science (AAAS) 1990
Subjects:
Online Access:http://dx.doi.org/10.1126/science.249.4971.863
https://www.science.org/doi/pdf/10.1126/science.249.4971.863
Description
Summary:During the past decade, geochemical paleoceanographers have begun to explore the changes in the circulation of the deep ocean that occurred during the glacial-interglacial cycles of the earth's recent history. The deep ocean was significantly colder during the glacial maximum. The distributions of biologically utilized elements (such as carbon and phosphorus) were significantly different as well; higher concentrations of these elements occurred in the deep (>2500 meters depth) North Atlantic, and lower concentrations occurred in the upper (<2500 meters depth) waters of the North Atlantic and possibly in all of the major ocean basins. In contrast, relatively subtle changes have been observed in the radiocarbon ages of deep waters. Slow deepwater changes are statistically linked to variations in the earth's orbit, but rapid changes in deepwater circulation also have occurred. Deepwater chemistry and circulation changes may control the variability in atmospheric CO 2 levels that have been documented from studies of air bubbles in polar ice cores.