Cassini Encounters Enceladus: Background and the Discovery of a South Polar Hot Spot

The Cassini spacecraft completed three close flybys of Saturn's enigmatic moon Enceladus between February and July 2005. On the third and closest flyby, on 14 July 2005, multiple Cassini instruments detected evidence for ongoing endogenic activity in a region centered on Enceladus' south p...

Full description

Bibliographic Details
Published in:Science
Main Authors: Spencer, J. R., Pearl, J. C., Segura, M., Flasar, F. M., Mamoutkine, A., Romani, P., Buratti, B. J., Hendrix, A. R., Spilker, L. J., Lopes, R. M. C.
Format: Article in Journal/Newspaper
Language:English
Published: American Association for the Advancement of Science (AAAS) 2006
Subjects:
Online Access:http://dx.doi.org/10.1126/science.1121661
https://www.science.org/doi/pdf/10.1126/science.1121661
Description
Summary:The Cassini spacecraft completed three close flybys of Saturn's enigmatic moon Enceladus between February and July 2005. On the third and closest flyby, on 14 July 2005, multiple Cassini instruments detected evidence for ongoing endogenic activity in a region centered on Enceladus' south pole. The polar region is the source of a plume of gas and dust, which probably emanates from prominent warm troughs seen on the surface. Cassini's Composite Infrared Spectrometer (CIRS) detected 3 to 7 gigawatts of thermal emission from the south polar troughs at temperatures up to 145 kelvin or higher, making Enceladus only the third known solid planetary body—after Earth and Io—that is sufficiently geologically active for its internal heat to be detected by remote sensing. If the plume is generated by the sublimation of water ice and if the sublimation source is visible to CIRS, then sublimation temperatures of at least 180 kelvin are required.