Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation

Current release candidate v2.0 (RC2) of the ERS-2 retracker threshold model used for producing the satellite-altimetry-based sea-ice thickness climate data record (CDR) v3.0 ofthe European Space Agencies (ESA) Climate Change Initiative+ (CCI+) on sea ice. Model training is based on orbit trajectory...

Full description

Bibliographic Details
Main Authors: Stephan Paul, Stefan Hendricks
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2023
Subjects:
Online Access:https://doi.org/10.5281/zenodo.8335298
id ftzenodo:oai:zenodo.org:8335298
record_format openpolar
spelling ftzenodo:oai:zenodo.org:8335298 2024-09-15T17:52:15+00:00 Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation Stephan Paul Stefan Hendricks 2023-09-11 https://doi.org/10.5281/zenodo.8335298 unknown Zenodo https://doi.org/10.5281/zenodo.8335297 https://doi.org/10.5281/zenodo.8335298 oai:zenodo.org:8335298 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode info:eu-repo/semantics/other 2023 ftzenodo https://doi.org/10.5281/zenodo.833529810.5281/zenodo.8335297 2024-07-25T11:02:14Z Current release candidate v2.0 (RC2) of the ERS-2 retracker threshold model used for producing the satellite-altimetry-based sea-ice thickness climate data record (CDR) v3.0 ofthe European Space Agencies (ESA) Climate Change Initiative+ (CCI+) on sea ice. Model training is based on orbit trajectory matches between ENVISAT and ERS-2 within the mission overlap period between 2002/10 and 2003/04. All training data was generated from trajectory matches within the Arctic basin and within a radius of 1.5 km around the each individual ERS-2 waveform. Initial optimal-retracker thresholds were then computed from ENVISAT average reference freeboards per ERS-2 waveform. Model input are individual echo-waveform subsets of 35 range bins around the first-maximum index used the by the Threshold First Maximum Retracker Algorithm (TFMRA; 5bins before and 30bins after the first-maximum index)– threshold computations are therefore independent on any auxiliary data or associated waveform parameters. Model architecture (pyTorch implementation): <code>fnn_envisat_rc1 ( (fc1): Linear(in_features=45, out_features=2048, bias=True) (fc2): Linear(in_features=2048, out_features=2048, bias=True) (fc3): Linear(in_features=2048, out_features=2048, bias=True) (fc4): Linear(in_features=2048, out_features=2048, bias=True) (fc5): Linear(in_features=2048, out_features=2048, bias=True) (fc6): Linear(in_features=2048, out_features=1, bias=True) )</code> Other/Unknown Material Arctic Basin Climate change Sea ice Zenodo
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language unknown
description Current release candidate v2.0 (RC2) of the ERS-2 retracker threshold model used for producing the satellite-altimetry-based sea-ice thickness climate data record (CDR) v3.0 ofthe European Space Agencies (ESA) Climate Change Initiative+ (CCI+) on sea ice. Model training is based on orbit trajectory matches between ENVISAT and ERS-2 within the mission overlap period between 2002/10 and 2003/04. All training data was generated from trajectory matches within the Arctic basin and within a radius of 1.5 km around the each individual ERS-2 waveform. Initial optimal-retracker thresholds were then computed from ENVISAT average reference freeboards per ERS-2 waveform. Model input are individual echo-waveform subsets of 35 range bins around the first-maximum index used the by the Threshold First Maximum Retracker Algorithm (TFMRA; 5bins before and 30bins after the first-maximum index)– threshold computations are therefore independent on any auxiliary data or associated waveform parameters. Model architecture (pyTorch implementation): <code>fnn_envisat_rc1 ( (fc1): Linear(in_features=45, out_features=2048, bias=True) (fc2): Linear(in_features=2048, out_features=2048, bias=True) (fc3): Linear(in_features=2048, out_features=2048, bias=True) (fc4): Linear(in_features=2048, out_features=2048, bias=True) (fc5): Linear(in_features=2048, out_features=2048, bias=True) (fc6): Linear(in_features=2048, out_features=1, bias=True) )</code>
format Other/Unknown Material
author Stephan Paul
Stefan Hendricks
spellingShingle Stephan Paul
Stefan Hendricks
Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
author_facet Stephan Paul
Stefan Hendricks
author_sort Stephan Paul
title Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
title_short Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
title_full Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
title_fullStr Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
title_full_unstemmed Feed-Forward Neural Network for ERS-2 Retracker Threshold Computation
title_sort feed-forward neural network for ers-2 retracker threshold computation
publisher Zenodo
publishDate 2023
url https://doi.org/10.5281/zenodo.8335298
genre Arctic Basin
Climate change
Sea ice
genre_facet Arctic Basin
Climate change
Sea ice
op_relation https://doi.org/10.5281/zenodo.8335297
https://doi.org/10.5281/zenodo.8335298
oai:zenodo.org:8335298
op_rights info:eu-repo/semantics/openAccess
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.5281/zenodo.833529810.5281/zenodo.8335297
_version_ 1810294313822715904