EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska

We are sharing the Ecoacoustic Dataset from Arctic North Slope Alaska (EDANSA-2019), a dataset with audio samples collected from the area of 9000 square miles throughout the 2019 summer season on the North Slope of Alaska and neighboring regions. There are over 27 hours of labeled data according to...

Full description

Bibliographic Details
Main Authors: Çoban, Enis Berk, Perra, Megan, Pir, Dara, Mandel, Michael
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2022
Subjects:
Online Access:https://doi.org/10.5281/zenodo.6824272
id ftzenodo:oai:zenodo.org:6824272
record_format openpolar
spelling ftzenodo:oai:zenodo.org:6824272 2024-09-15T18:25:02+00:00 EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska Çoban, Enis Berk Perra, Megan Pir, Dara Mandel, Michael 2022-07-14 https://doi.org/10.5281/zenodo.6824272 unknown Zenodo https://doi.org/10.5281/zenodo.6824271 https://doi.org/10.5281/zenodo.6824272 oai:zenodo.org:6824272 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode Ecoacoustics audio dataset labeled data convolutional neural network biophony anthrophony geophony info:eu-repo/semantics/other 2022 ftzenodo https://doi.org/10.5281/zenodo.682427210.5281/zenodo.6824271 2024-07-27T06:14:57Z We are sharing the Ecoacoustic Dataset from Arctic North Slope Alaska (EDANSA-2019), a dataset with audio samples collected from the area of 9000 square miles throughout the 2019 summer season on the North Slope of Alaska and neighboring regions. There are over 27 hours of labeled data according to 28 tags with enough instances of 9 important environmental classes to train baseline convolutional recognizers. Please see the following GitHub page for the accompanying publication, updates about the dataset, and baseline code: https://github.com/speechLabBcCuny/EDANSA-2019 Other/Unknown Material north slope Alaska Zenodo
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language unknown
topic Ecoacoustics
audio dataset
labeled data
convolutional neural network
biophony
anthrophony
geophony
spellingShingle Ecoacoustics
audio dataset
labeled data
convolutional neural network
biophony
anthrophony
geophony
Çoban, Enis Berk
Perra, Megan
Pir, Dara
Mandel, Michael
EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
topic_facet Ecoacoustics
audio dataset
labeled data
convolutional neural network
biophony
anthrophony
geophony
description We are sharing the Ecoacoustic Dataset from Arctic North Slope Alaska (EDANSA-2019), a dataset with audio samples collected from the area of 9000 square miles throughout the 2019 summer season on the North Slope of Alaska and neighboring regions. There are over 27 hours of labeled data according to 28 tags with enough instances of 9 important environmental classes to train baseline convolutional recognizers. Please see the following GitHub page for the accompanying publication, updates about the dataset, and baseline code: https://github.com/speechLabBcCuny/EDANSA-2019
format Other/Unknown Material
author Çoban, Enis Berk
Perra, Megan
Pir, Dara
Mandel, Michael
author_facet Çoban, Enis Berk
Perra, Megan
Pir, Dara
Mandel, Michael
author_sort Çoban, Enis Berk
title EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
title_short EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
title_full EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
title_fullStr EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
title_full_unstemmed EDANSA-2019: The Ecoacoustic Dataset from Arctic North Slope Alaska
title_sort edansa-2019: the ecoacoustic dataset from arctic north slope alaska
publisher Zenodo
publishDate 2022
url https://doi.org/10.5281/zenodo.6824272
genre north slope
Alaska
genre_facet north slope
Alaska
op_relation https://doi.org/10.5281/zenodo.6824271
https://doi.org/10.5281/zenodo.6824272
oai:zenodo.org:6824272
op_rights info:eu-repo/semantics/openAccess
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.5281/zenodo.682427210.5281/zenodo.6824271
_version_ 1810465429345271808