Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea

The conservation of seabirds is increasingly important for their role as indicator species of ocean ecosystems, which are predicted to experience increasing levels of exploitation this century. To safeguard these ecosystems will require predictive, spatial studies of seabird foraging hotspots. Curre...

Full description

Bibliographic Details
Main Authors: Hodges, Samuel, Erikstad, Kjell-Einar, Reiertsen, Tone Kirsten
Other Authors: Erikstad, Kjell Einar
Format: Article in Journal/Newspaper
Language:English
Published: 2021
Subjects:
Online Access:https://zenodo.org/record/6379791
https://doi.org/10.5281/zenodo.6379791
id ftzenodo:oai:zenodo.org:6379791
record_format openpolar
spelling ftzenodo:oai:zenodo.org:6379791 2023-05-15T13:12:18+02:00 Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea Hodges, Samuel Erikstad, Kjell-Einar Reiertsen, Tone Kirsten Hodges, Samuel Erikstad, Kjell Einar Reiertsen, Tone Kirsten 2021-01-16 https://zenodo.org/record/6379791 https://doi.org/10.5281/zenodo.6379791 eng eng doi:10.5281/zenodo.4445074 https://zenodo.org/record/6379791 https://doi.org/10.5281/zenodo.6379791 oai:zenodo.org:6379791 info:eu-repo/semantics/openAccess https://creativecommons.org/licenses/by/4.0/legalcode MaxENT Uria lomvia Uria aalge Fratercula arctica Alca torda SST model Norway Barents Sea info:eu-repo/semantics/article publication-article 2021 ftzenodo https://doi.org/10.5281/zenodo.637979110.5281/zenodo.4445074 2023-03-11T02:53:55Z The conservation of seabirds is increasingly important for their role as indicator species of ocean ecosystems, which are predicted to experience increasing levels of exploitation this century. To safeguard these ecosystems will require predictive, spatial studies of seabird foraging hotspots. Current research on seabird foraging hotspots has established a significant relationship between probability of presence and several environmental variables, including Sea Surface Temperature (SST). However, interannual, basin-wide variation has the potential to invalidate these models, which depend on seasonal mesoscale variability. In this study, we present a novel solution to predict presence from spatially and temporally variable environmental predictors, while reducing the influence of irrelevant basin-wide variation. We model the Maximum Entropy (MaxENT) Model derived relationship between Standardised Monthly SST (StdSST) and Habitat Suitability using Gaussian curve models, and then convert independent StdSST data to produce heatmaps of predicted seabird presence. In this study we demonstrate StdSST to be a functional environmental predictor of seabird presence, within a Gaussian curve model framework. We demonstrate accurate predictions of the model’s training data and of independent seabird presence data to a high degree of accuracy (Area under the ROC Curve > 0.65) for four species of Auk; Common Guillemots, Razorbills, Puffins and Brunnich’s Guillemots. Synthesis and Applications: We believe that the methodology we have developed and tested in this study can be used to guide ecosystem management practices by converting coupled-climate model predictions into predictions of future presence based on Habitat Suitability for the species, allowing us to consider the possible effects of climate change and yearly variation of SST on foraging Seabird hotspots in the Barents Sea. Article in Journal/Newspaper Alca torda Barents Sea fratercula Fratercula arctica Uria aalge Uria lomvia uria Zenodo Barents Sea Norway
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language English
topic MaxENT
Uria lomvia
Uria aalge
Fratercula arctica
Alca torda
SST model
Norway
Barents Sea
spellingShingle MaxENT
Uria lomvia
Uria aalge
Fratercula arctica
Alca torda
SST model
Norway
Barents Sea
Hodges, Samuel
Erikstad, Kjell-Einar
Reiertsen, Tone Kirsten
Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
topic_facet MaxENT
Uria lomvia
Uria aalge
Fratercula arctica
Alca torda
SST model
Norway
Barents Sea
description The conservation of seabirds is increasingly important for their role as indicator species of ocean ecosystems, which are predicted to experience increasing levels of exploitation this century. To safeguard these ecosystems will require predictive, spatial studies of seabird foraging hotspots. Current research on seabird foraging hotspots has established a significant relationship between probability of presence and several environmental variables, including Sea Surface Temperature (SST). However, interannual, basin-wide variation has the potential to invalidate these models, which depend on seasonal mesoscale variability. In this study, we present a novel solution to predict presence from spatially and temporally variable environmental predictors, while reducing the influence of irrelevant basin-wide variation. We model the Maximum Entropy (MaxENT) Model derived relationship between Standardised Monthly SST (StdSST) and Habitat Suitability using Gaussian curve models, and then convert independent StdSST data to produce heatmaps of predicted seabird presence. In this study we demonstrate StdSST to be a functional environmental predictor of seabird presence, within a Gaussian curve model framework. We demonstrate accurate predictions of the model’s training data and of independent seabird presence data to a high degree of accuracy (Area under the ROC Curve > 0.65) for four species of Auk; Common Guillemots, Razorbills, Puffins and Brunnich’s Guillemots. Synthesis and Applications: We believe that the methodology we have developed and tested in this study can be used to guide ecosystem management practices by converting coupled-climate model predictions into predictions of future presence based on Habitat Suitability for the species, allowing us to consider the possible effects of climate change and yearly variation of SST on foraging Seabird hotspots in the Barents Sea.
author2 Hodges, Samuel
Erikstad, Kjell Einar
Reiertsen, Tone Kirsten
format Article in Journal/Newspaper
author Hodges, Samuel
Erikstad, Kjell-Einar
Reiertsen, Tone Kirsten
author_facet Hodges, Samuel
Erikstad, Kjell-Einar
Reiertsen, Tone Kirsten
author_sort Hodges, Samuel
title Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
title_short Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
title_full Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
title_fullStr Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
title_full_unstemmed Predicting the Foraging Patterns of Wintering Auks Using a Sea Surface Temperature Model for the Barents Sea
title_sort predicting the foraging patterns of wintering auks using a sea surface temperature model for the barents sea
publishDate 2021
url https://zenodo.org/record/6379791
https://doi.org/10.5281/zenodo.6379791
geographic Barents Sea
Norway
geographic_facet Barents Sea
Norway
genre Alca torda
Barents Sea
fratercula
Fratercula arctica
Uria aalge
Uria lomvia
uria
genre_facet Alca torda
Barents Sea
fratercula
Fratercula arctica
Uria aalge
Uria lomvia
uria
op_relation doi:10.5281/zenodo.4445074
https://zenodo.org/record/6379791
https://doi.org/10.5281/zenodo.6379791
oai:zenodo.org:6379791
op_rights info:eu-repo/semantics/openAccess
https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.5281/zenodo.637979110.5281/zenodo.4445074
_version_ 1766251282515886080