Asimina triloba genetic data

Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold-intolerant Northern Hemisphere plants retreated to southern glacial refugia. During...

Full description

Bibliographic Details
Main Authors: Trapnell, Dorset, Wyatt, Graham, Hamrick, Jim
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2022
Subjects:
Online Access:https://doi.org/10.5061/dryad.5x69p8d3g
id ftzenodo:oai:zenodo.org:5572913
record_format openpolar
spelling ftzenodo:oai:zenodo.org:5572913 2024-09-15T18:12:32+00:00 Asimina triloba genetic data Trapnell, Dorset Wyatt, Graham Hamrick, Jim 2022-07-13 https://doi.org/10.5061/dryad.5x69p8d3g unknown Zenodo https://zenodo.org/communities/dryad https://doi.org/10.5061/dryad.5x69p8d3g oai:zenodo.org:5572913 info:eu-repo/semantics/openAccess Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode Asimina triloba clonality pawpaw pre-Columbian peoples fine-scale spatial genetic structure info:eu-repo/semantics/other 2022 ftzenodo https://doi.org/10.5061/dryad.5x69p8d3g 2024-07-26T17:10:00Z Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold-intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 year before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre-Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723.1 km). Some of the most compelling evidence for human-mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695.3 km) than wild populations sharing rare alleles (mean = 607.1 km; p = 0.014). Collectively the genetic data suggest that long-distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples. Missing data is indicated by "0" Funding provided by: University of Georgia Crossref Funder Registry ID: ... Other/Unknown Material Ice Sheet Zenodo
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language unknown
topic Asimina triloba
clonality
pawpaw
pre-Columbian peoples
fine-scale spatial genetic structure
spellingShingle Asimina triloba
clonality
pawpaw
pre-Columbian peoples
fine-scale spatial genetic structure
Trapnell, Dorset
Wyatt, Graham
Hamrick, Jim
Asimina triloba genetic data
topic_facet Asimina triloba
clonality
pawpaw
pre-Columbian peoples
fine-scale spatial genetic structure
description Dispersal and colonization are among the most important ecological processes for species persistence as they allow species to track changing environmental conditions. During the last glacial maximum (LGM), many cold-intolerant Northern Hemisphere plants retreated to southern glacial refugia. During subsequent warming periods, these species expanded their ranges northward. Interestingly, some tree species with limited seed dispersal migrated considerable distances after the LGM ~19,000 year before present (YBP). It has been hypothesized that indigenous peoples may have dispersed valued species, in some cases beyond the southern limits of the Laurentide Ice Sheet. To investigate this question we employed a molecular genetics approach on a widespread North American understory tree species whose fruit was valued by indigenous peoples. Twenty putative anthropogenic (near pre-Columbian habitations) and 62 wild populations of Asimina triloba (pawpaw), which produces the largest edible fruit of any North American tree, were genetically assayed with nine microsatellite loci. Putative anthropogenic populations were characterized by reduced genetic diversity and greater excess heterozygosity relative to wild populations. Anthropogenic populations in regions that were glaciated during the LGM had profiles consistent with founder effects and reduced gene flow, and shared rare alleles with wild populations hundreds of kilometers away (mean = 723.1 km). Some of the most compelling evidence for human-mediated dispersal is that putative anthropogenic and wild populations sharing rare alleles were separated by significantly greater distances (mean = 695.3 km) than wild populations sharing rare alleles (mean = 607.1 km; p = 0.014). Collectively the genetic data suggest that long-distance dispersal played an important role in the distribution of pawpaw and is consistent with the hypothesized role of indigenous peoples. Missing data is indicated by "0" Funding provided by: University of Georgia Crossref Funder Registry ID: ...
format Other/Unknown Material
author Trapnell, Dorset
Wyatt, Graham
Hamrick, Jim
author_facet Trapnell, Dorset
Wyatt, Graham
Hamrick, Jim
author_sort Trapnell, Dorset
title Asimina triloba genetic data
title_short Asimina triloba genetic data
title_full Asimina triloba genetic data
title_fullStr Asimina triloba genetic data
title_full_unstemmed Asimina triloba genetic data
title_sort asimina triloba genetic data
publisher Zenodo
publishDate 2022
url https://doi.org/10.5061/dryad.5x69p8d3g
genre Ice Sheet
genre_facet Ice Sheet
op_relation https://zenodo.org/communities/dryad
https://doi.org/10.5061/dryad.5x69p8d3g
oai:zenodo.org:5572913
op_rights info:eu-repo/semantics/openAccess
Creative Commons Zero v1.0 Universal
https://creativecommons.org/publicdomain/zero/1.0/legalcode
op_doi https://doi.org/10.5061/dryad.5x69p8d3g
_version_ 1810450120088485888