Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland
Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in...
Main Authors: | , , |
---|---|
Format: | Other/Unknown Material |
Language: | English |
Published: |
Zenodo
2021
|
Subjects: | |
Online Access: | https://doi.org/10.5281/zenodo.5075861 |
id |
ftzenodo:oai:zenodo.org:5075861 |
---|---|
record_format |
openpolar |
spelling |
ftzenodo:oai:zenodo.org:5075861 2024-09-15T18:09:42+00:00 Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland Karmakar Chandrabali Dumitru Octavian Datcu Mihai 2021-07-06 https://doi.org/10.5281/zenodo.5075861 eng eng Zenodo https://doi.org/10.1109/JSTARS.2020.3039012 https://zenodo.org/communities/polarops https://zenodo.org/communities/eu https://doi.org/10.5281/zenodo.5075860 https://doi.org/10.5281/zenodo.5075861 oai:zenodo.org:5075861 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode Latent Dirichlet Allocation Topics Sentinel-1 info:eu-repo/semantics/other 2021 ftzenodo https://doi.org/10.5281/zenodo.507586110.1109/JSTARS.2020.303901210.5281/zenodo.5075860 2024-07-26T22:07:19Z Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in 4,096 topics per patch). Each file has 4 months of observation. Array size is 25600 x 4096. We provide 6 files containing 24 months of observation (see the excel file for the Sentinel-1 ids) [2]. Software to open with: Python Example code: import numpy Data= numpy.load(“filename_with_path”) Reference: 1. C. Karmakar, C.O. Dumitru, G. Schwarz, and M. Datcu, “ Feature-Free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation ”, IEEE JSTARS, vol. 14, pp. 676-689, 2021. Other/Unknown Material Greenland Sea ice Zenodo |
institution |
Open Polar |
collection |
Zenodo |
op_collection_id |
ftzenodo |
language |
English |
topic |
Latent Dirichlet Allocation Topics Sentinel-1 |
spellingShingle |
Latent Dirichlet Allocation Topics Sentinel-1 Karmakar Chandrabali Dumitru Octavian Datcu Mihai Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
topic_facet |
Latent Dirichlet Allocation Topics Sentinel-1 |
description |
Data description File type : -.npy (python numpy file) File content: Each file is a numpy array of size (number of 256x256 patches, 4096) indexed by id of the patch (each scene contains 6,400 patches, each patch has 4,096 micropatches of size 4x4, assigned one topic [1] per micropatch, resulting in 4,096 topics per patch). Each file has 4 months of observation. Array size is 25600 x 4096. We provide 6 files containing 24 months of observation (see the excel file for the Sentinel-1 ids) [2]. Software to open with: Python Example code: import numpy Data= numpy.load(“filename_with_path”) Reference: 1. C. Karmakar, C.O. Dumitru, G. Schwarz, and M. Datcu, “ Feature-Free Explainable Data Mining in SAR Images Using Latent Dirichlet Allocation ”, IEEE JSTARS, vol. 14, pp. 676-689, 2021. |
format |
Other/Unknown Material |
author |
Karmakar Chandrabali Dumitru Octavian Datcu Mihai |
author_facet |
Karmakar Chandrabali Dumitru Octavian Datcu Mihai |
author_sort |
Karmakar Chandrabali |
title |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_short |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_full |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_fullStr |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_full_unstemmed |
Sea-Ice Data Content Representation Based on Latent Dirichlet Allocation for Belgica Bank in Greenland |
title_sort |
sea-ice data content representation based on latent dirichlet allocation for belgica bank in greenland |
publisher |
Zenodo |
publishDate |
2021 |
url |
https://doi.org/10.5281/zenodo.5075861 |
genre |
Greenland Sea ice |
genre_facet |
Greenland Sea ice |
op_relation |
https://doi.org/10.1109/JSTARS.2020.3039012 https://zenodo.org/communities/polarops https://zenodo.org/communities/eu https://doi.org/10.5281/zenodo.5075860 https://doi.org/10.5281/zenodo.5075861 oai:zenodo.org:5075861 |
op_rights |
info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode |
op_doi |
https://doi.org/10.5281/zenodo.507586110.1109/JSTARS.2020.303901210.5281/zenodo.5075860 |
_version_ |
1810447275850203136 |