Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts

Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts has been well studied; however, supplementation of de novo synthesized nutrients to hosts by extr...

Full description

Bibliographic Details
Main Authors: Larsen, Thomas, Ventura, Marc, Maraldo, Kristine, Triadó-Margarit, Xavier, Casamayor, Emilio O., Wang, Yiming V., Andersen, Nils, O'Brien, Diane M.
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2017
Subjects:
Online Access:https://doi.org/10.5061/dryad.6f798
id ftzenodo:oai:zenodo.org:4936157
record_format openpolar
spelling ftzenodo:oai:zenodo.org:4936157 2024-09-09T19:22:58+00:00 Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts Larsen, Thomas Ventura, Marc Maraldo, Kristine Triadó-Margarit, Xavier Casamayor, Emilio O. Wang, Yiming V. Andersen, Nils O'Brien, Diane M. 2017-06-13 https://doi.org/10.5061/dryad.6f798 unknown Zenodo https://doi.org/10.1111/1365-2656.12563 https://zenodo.org/communities/dryad https://doi.org/10.5061/dryad.6f798 oai:zenodo.org:4936157 info:eu-repo/semantics/openAccess Creative Commons Zero v1.0 Universal https://creativecommons.org/publicdomain/zero/1.0/legalcode Stable carbon isotopes amino acids info:eu-repo/semantics/other 2017 ftzenodo https://doi.org/10.5061/dryad.6f79810.1111/1365-2656.12563 2024-07-25T22:27:02Z Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts has been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly-understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fiber diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fiber diets. Our gene sequencing results of gut microbiota showed that the worms harbor several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial gut symbionts, and demonstrate that symbiotic ... Other/Unknown Material Arctic Zenodo Arctic
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language unknown
topic Stable carbon isotopes amino acids
spellingShingle Stable carbon isotopes amino acids
Larsen, Thomas
Ventura, Marc
Maraldo, Kristine
Triadó-Margarit, Xavier
Casamayor, Emilio O.
Wang, Yiming V.
Andersen, Nils
O'Brien, Diane M.
Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
topic_facet Stable carbon isotopes amino acids
description Supplementation of nutrients by symbionts enables consumers to thrive on resources that might otherwise be insufficient to meet nutritional demands. Such nutritional subsidies by intracellular symbionts has been well studied; however, supplementation of de novo synthesized nutrients to hosts by extracellular gut symbionts is poorly documented, especially for generalists with relatively undifferentiated intestinal tracts. Although gut symbionts facilitate degradation of resources that would otherwise remain inaccessible to the host, such digestive actions alone cannot make up for dietary insufficiencies of macronutrients such as essential amino acids (EAA). Documenting whether gut symbionts also function as partners for symbiotic EAA supplementation is important because the question of how some detritivores are able to subsist on nutritionally insufficient diets has remained unresolved. To answer this poorly-understood nutritional aspect of symbiont-host interactions, we studied the enchytraeid worm, a bulk soil feeder that thrives in arctic peatlands. In a combined field and laboratory study, we employed stable isotope fingerprinting of amino acids to identify the biosynthetic origins of amino acids to bacteria, fungi and plants in enchytraeids. Enchytraeids collected from arctic peatlands derived more than 80% of their EAA from bacteria. In a controlled feeding study with the enchytraeid Enchytraeus crypticus, EAA derived almost exclusively from gut bacteria when the worms fed on higher fiber diets, whereas most of the enchytraeids' EAA derived from dietary sources when fed on lower fiber diets. Our gene sequencing results of gut microbiota showed that the worms harbor several taxa in their gut lumen absent from their diets and substrates. Almost all gut taxa are candidates for EAA supplementation because almost all belong to clades capable of biosynthesizing EAA. Our study provides the first evidence of extensive symbiotic supplementation of EAA by microbial gut symbionts, and demonstrate that symbiotic ...
format Other/Unknown Material
author Larsen, Thomas
Ventura, Marc
Maraldo, Kristine
Triadó-Margarit, Xavier
Casamayor, Emilio O.
Wang, Yiming V.
Andersen, Nils
O'Brien, Diane M.
author_facet Larsen, Thomas
Ventura, Marc
Maraldo, Kristine
Triadó-Margarit, Xavier
Casamayor, Emilio O.
Wang, Yiming V.
Andersen, Nils
O'Brien, Diane M.
author_sort Larsen, Thomas
title Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
title_short Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
title_full Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
title_fullStr Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
title_full_unstemmed Data from: The dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
title_sort data from: the dominant detritus-feeding invertebrate in arctic peat soils derives its essential amino acids from gut symbionts
publisher Zenodo
publishDate 2017
url https://doi.org/10.5061/dryad.6f798
geographic Arctic
geographic_facet Arctic
genre Arctic
genre_facet Arctic
op_relation https://doi.org/10.1111/1365-2656.12563
https://zenodo.org/communities/dryad
https://doi.org/10.5061/dryad.6f798
oai:zenodo.org:4936157
op_rights info:eu-repo/semantics/openAccess
Creative Commons Zero v1.0 Universal
https://creativecommons.org/publicdomain/zero/1.0/legalcode
op_doi https://doi.org/10.5061/dryad.6f79810.1111/1365-2656.12563
_version_ 1809763322205044736