Data from: Long-term (1979-present) total water storage anomalies over the global land derived by reconstructing GRACE data

This research data is associated with the manuscript entitled "Long-term (1979-present) Total Water Storage Anomalies Over the Global Land Derived by Reconstructing GRACE data (https://doi.org/10.1029/2021GL093492)". The study focused on the reconstruction of long-term GRACE-like gridded t...

Full description

Bibliographic Details
Main Author: Li, Fupeng
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2021
Subjects:
Online Access:https://doi.org/10.5061/dryad.z612jm6bt
Description
Summary:This research data is associated with the manuscript entitled "Long-term (1979-present) Total Water Storage Anomalies Over the Global Land Derived by Reconstructing GRACE data (https://doi.org/10.1029/2021GL093492)". The study focused on the reconstruction of long-term GRACE-like gridded total water storage anomalies over the global land surface. Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has monitored global total water storage anomalies (TWSA) with an unprecedented accuracy. Yet, many applications require a longer record, i.e. extending prior to the GRACE period. Besides, the Global Climate Observing System (GCOS) Steering Committee has made great efforts towards establishing TWSA as a new Essential Climate Variable (ECV). Here, we produced a new global (excluding Antarctica) total water storage anomaly data set by reconstructing the RL06 CSR mascons using precipitation, land temperature, sea surface temperature, soil moisture, evaporation, surface runoff, subsurface runoff, and several climate indices as inputs. The data set is provided with equivalent water height [unit: cm]. The grid resolution of this data set is 0.5° and the monthly time series covers the full period from July 1979 through June 2020. We compared our dataset to previously published products using the Satellite Laser Ranging (SLR) solution and the observed global mean sea level change as validations. The comparison suggests that we provided a more accurate dataset at the global scale than ever before. This dataset will contribute to the filling of the GRACE data gap and can contribute to the potential studies on testing climate model simulation, constructing the sea level budget, or understanding drought/flood events prior to the GRACE period. One could read this global total water storage reconstruction data set by using any version of the software Matlab with a simple command 'load'. ==================== Variable descriptions lat : Double type latitude. long : Double type longitude. time : Double type time. ...