Data from: Divergent and linked selection shape patterns of genomic differentiation between European and North American Atlantic salmon (Salmo salar)

As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selectio...

Full description

Bibliographic Details
Main Authors: Lehnert, Sarah, Kess, Tony, Bentzen, Paul, Clément, Marie, Bradbury, Ian
Format: Other/Unknown Material
Language:unknown
Published: Zenodo 2020
Subjects:
Online Access:https://doi.org/10.5061/dryad.hdr7sqvfc
Description
Summary:As populations diverge many processes can shape genomic patterns of differentiation. Regions of high differentiation can arise due to divergent selection acting on selected loci, genetic hitchhiking of nearby loci, or through repeated selection against deleterious alleles (linked background selection); this divergence may then be further elevated in regions of reduced recombination. Atlantic salmon (Salmo salar) from Europe and North America diverged >600,000 years ago and despite some evidence of secondary contact, the majority of genetic data indicate substantial divergence between lineages. This deep divergence with potential gene flow provides an opportunity to investigate the role of different mechanisms that shape the genomic landscape during early speciation. Here, using 184,295 SNPs and 80 populations, we investigate the genomic landscape of differentiation across the Atlantic Ocean with a focus on highly differentiated regions and processes shaping them. We found evidence of high (mean FST=0.26) and heterogeneous genomic differentiation between continents. Genomic regions associated with high trans-Atlantic differentiation ranged in size from single loci (SNPs) within important genes to large regions (1-3Mbp) on four chromosomes (Ssa06, Ssa13, Ssa16, and Ssa19). These regions showed signatures consistent with selection, including high linkage disequilibrium despite no local reduction in recombination. Genes and functional enrichment of processes associated with differentiated regions may highlight continental differences in ocean navigation and parasite resistance. Our results provide insight into potential mechanisms underlying differences between continents, and evidence of near fixed and potentially adaptive trans-Atlantic differences concurrent with a background of high genome-wide differentiation supports subspecies designation in Atlantic salmon. File format is genepop. Missing data are coded as 000000, and alleles are coded as 001 and 002. Funding provided by: Fisheries and Oceans Canada ...