Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea

Deep sea is the largest and likely the most biologically diverse ecosystem of the world, but it is also the most unknown. The Mediterranean Sea (< 1% of the ocean surface and contains only the 0.3% of its volume) is a hot spot of marine biodiversity containing ca 7.5% of the world marine biodiver...

Full description

Bibliographic Details
Published in:Rendiconti Lincei. Scienze Fisiche e Naturali
Main Author: Roberto Danovaro
Format: Article in Journal/Newspaper
Language:unknown
Published: Zenodo 2018
Subjects:
Online Access:https://doi.org/10.1007/s12210-018-0725-4
id ftzenodo:oai:zenodo.org:1462711
record_format openpolar
spelling ftzenodo:oai:zenodo.org:1462711 2024-09-15T18:28:25+00:00 Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea Roberto Danovaro 2018-06-21 https://doi.org/10.1007/s12210-018-0725-4 unknown Zenodo https://zenodo.org/communities/merces_project https://zenodo.org/communities/eu https://doi.org/10.1007/s12210-018-0725-4 oai:zenodo.org:1462711 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode Global change Deep Mediterranean Sea Deep-sea biology Ecosystem vulnerability info:eu-repo/semantics/article 2018 ftzenodo https://doi.org/10.1007/s12210-018-0725-4 2024-07-26T14:53:13Z Deep sea is the largest and likely the most biologically diverse ecosystem of the world, but it is also the most unknown. The Mediterranean Sea (< 1% of the ocean surface and contains only the 0.3% of its volume) is a hot spot of marine biodiversity containing ca 7.5% of the world marine biodiversity, associated with a multitude of habitats spreading from the coast to its dark portion (e.g., coral banks, seamounts, canyons, and hydrothermal vents). Its deep-sea ecosystems are increasingly subjected to direct anthropogenic impacts (including overfishing, chemical pollution, dumping, litter, and plastics), which are often over-imposed to the increasing effects of global change. Here, are illustrated the expected impacts of shifts in the main variables such as temperature, food supply, pH, and oxygen on the deep Mediterranean Sea ecosystems. One of the most consequences is related to shifts in the quality and quantity of the inputs of organic matter to the deep seafloor. The deep Mediterranean Sea is far more oligotrophic than other oceans at equal depths, and although deep-sea biota reacts to food shortage by increasing their efficiency in its use, a decrease in food availability can have dramatic effects on its food webs. The deep Mediterranean Sea is showing a clear rise of deep-water temperatures. In the last decades, deep-water warming is accelerating at unprecedented rates, causing a significant shift in biodiversity even for variations in the order of 0.1°C. Higher temperatures increase deep-sea metabolism, thus exacerbating the effects of food limitation. Moreover, ocean acidification reduces the calcification capacity of corals and alters their metabolism. Although it can be expected that increasing temperatures might increase the potential spread of oxygen minimum zone, so far, only hypoxic events were reported in Mediterranean Sea. The analysis of potential ecosystem vulnerability indicates that the ecosystems that are most sensitive to global change are deep-water coral systems and deep-sea plains. ... Article in Journal/Newspaper Ocean acidification Zenodo Rendiconti Lincei. Scienze Fisiche e Naturali 29 3 525 541
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language unknown
topic Global change
Deep Mediterranean Sea
Deep-sea biology
Ecosystem vulnerability
spellingShingle Global change
Deep Mediterranean Sea
Deep-sea biology
Ecosystem vulnerability
Roberto Danovaro
Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
topic_facet Global change
Deep Mediterranean Sea
Deep-sea biology
Ecosystem vulnerability
description Deep sea is the largest and likely the most biologically diverse ecosystem of the world, but it is also the most unknown. The Mediterranean Sea (< 1% of the ocean surface and contains only the 0.3% of its volume) is a hot spot of marine biodiversity containing ca 7.5% of the world marine biodiversity, associated with a multitude of habitats spreading from the coast to its dark portion (e.g., coral banks, seamounts, canyons, and hydrothermal vents). Its deep-sea ecosystems are increasingly subjected to direct anthropogenic impacts (including overfishing, chemical pollution, dumping, litter, and plastics), which are often over-imposed to the increasing effects of global change. Here, are illustrated the expected impacts of shifts in the main variables such as temperature, food supply, pH, and oxygen on the deep Mediterranean Sea ecosystems. One of the most consequences is related to shifts in the quality and quantity of the inputs of organic matter to the deep seafloor. The deep Mediterranean Sea is far more oligotrophic than other oceans at equal depths, and although deep-sea biota reacts to food shortage by increasing their efficiency in its use, a decrease in food availability can have dramatic effects on its food webs. The deep Mediterranean Sea is showing a clear rise of deep-water temperatures. In the last decades, deep-water warming is accelerating at unprecedented rates, causing a significant shift in biodiversity even for variations in the order of 0.1°C. Higher temperatures increase deep-sea metabolism, thus exacerbating the effects of food limitation. Moreover, ocean acidification reduces the calcification capacity of corals and alters their metabolism. Although it can be expected that increasing temperatures might increase the potential spread of oxygen minimum zone, so far, only hypoxic events were reported in Mediterranean Sea. The analysis of potential ecosystem vulnerability indicates that the ecosystems that are most sensitive to global change are deep-water coral systems and deep-sea plains. ...
format Article in Journal/Newspaper
author Roberto Danovaro
author_facet Roberto Danovaro
author_sort Roberto Danovaro
title Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
title_short Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
title_full Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
title_fullStr Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
title_full_unstemmed Climate change impacts on the biota and on vulnerable habitats of the deep Mediterranean Sea
title_sort climate change impacts on the biota and on vulnerable habitats of the deep mediterranean sea
publisher Zenodo
publishDate 2018
url https://doi.org/10.1007/s12210-018-0725-4
genre Ocean acidification
genre_facet Ocean acidification
op_relation https://zenodo.org/communities/merces_project
https://zenodo.org/communities/eu
https://doi.org/10.1007/s12210-018-0725-4
oai:zenodo.org:1462711
op_rights info:eu-repo/semantics/openAccess
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.1007/s12210-018-0725-4
container_title Rendiconti Lincei. Scienze Fisiche e Naturali
container_volume 29
container_issue 3
container_start_page 525
op_container_end_page 541
_version_ 1810469782924820480