Polygonal patterned ground and ancient buried ice on Mars and in Antarctica

Polygonal patterned ground and buried ice are features of the permafrost environments of Earth and Mars. A detailed understanding of these periglacial features in a terrestrial environment is necessary, as it will aid future interpretation of data provided by remote study of the features on Mars. It...

Full description

Bibliographic Details
Main Author: Bannister, Michele T
Other Authors: Nobes, David, Cottrell, Peter
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Zenodo 2007
Subjects:
Ice
Online Access:https://doi.org/10.5281/zenodo.1154854
id ftzenodo:oai:zenodo.org:1154854
record_format openpolar
spelling ftzenodo:oai:zenodo.org:1154854 2024-09-15T17:48:23+00:00 Polygonal patterned ground and ancient buried ice on Mars and in Antarctica Bannister, Michele T Nobes, David Cottrell, Peter 2007-12-03 https://doi.org/10.5281/zenodo.1154854 eng eng Zenodo https://doi.org/10.5281/zenodo.1154853 https://doi.org/10.5281/zenodo.1154854 oai:zenodo.org:1154854 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode geophysics antarctica buried ice polygonal patterned ground info:eu-repo/semantics/doctoralThesis 2007 ftzenodo https://doi.org/10.5281/zenodo.115485410.5281/zenodo.1154853 2024-07-26T21:23:25Z Polygonal patterned ground and buried ice are features of the permafrost environments of Earth and Mars. A detailed understanding of these periglacial features in a terrestrial environment is necessary, as it will aid future interpretation of data provided by remote study of the features on Mars. It will also provide a reference for monitoring the effects of climate change on Earth. In this study, the terrestrial context is provided by the examination of the subsurface physical properties of patterned ground and buried ice. The research is undertaken through ground-based geophysical methods in the Dry Valleys (Victoria Valley and Beacon Valley) of Antarctica. These are the most similar terrestrial sites to Mars. A 1.3 km transect profile across each valley was created using the methods of resistivity tomography, ground-penetrating radar, time-domain (transient) electromagnetism and a magnetic survey. Analysis of the data found the depth of the buried massive ice in Beacon Valley to be far greater than previously thought: over a hundred metres and across a large spatial extent. Regularly spaced, vertical features of high resistivity were interpreted as connections between the ice-cemented polygon centres and the massive ice body of Beacon Valley. Several lenses of massive ice were found in the layered permafrost sediments of Victoria Valley. The depth to the basement bedrock, inferred from the time-domain electromagnetism measurements, was over a hundred metres. This bedrock appeared to be overlain by a layer of brackish water. Regularly spaced, resistive vertical features in the near surface were interpreted as the sand wedges or cracks of the polygonal patterned ground. Due to its successful application in Victoria Valley, it is proposed that time-domain electromagnetism would be a useful geophysical method for inclusion on a future Mars mission. GEOL 490 Project, submitted in partial fulfilment of the requirements for the degree of Bachelor of Science with Combined Honours in Astronomy and Geology at the ... Doctoral or Postdoctoral Thesis Antarc* Antarctica Ice permafrost wedge* Zenodo
institution Open Polar
collection Zenodo
op_collection_id ftzenodo
language English
topic geophysics
antarctica
buried ice
polygonal patterned ground
spellingShingle geophysics
antarctica
buried ice
polygonal patterned ground
Bannister, Michele T
Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
topic_facet geophysics
antarctica
buried ice
polygonal patterned ground
description Polygonal patterned ground and buried ice are features of the permafrost environments of Earth and Mars. A detailed understanding of these periglacial features in a terrestrial environment is necessary, as it will aid future interpretation of data provided by remote study of the features on Mars. It will also provide a reference for monitoring the effects of climate change on Earth. In this study, the terrestrial context is provided by the examination of the subsurface physical properties of patterned ground and buried ice. The research is undertaken through ground-based geophysical methods in the Dry Valleys (Victoria Valley and Beacon Valley) of Antarctica. These are the most similar terrestrial sites to Mars. A 1.3 km transect profile across each valley was created using the methods of resistivity tomography, ground-penetrating radar, time-domain (transient) electromagnetism and a magnetic survey. Analysis of the data found the depth of the buried massive ice in Beacon Valley to be far greater than previously thought: over a hundred metres and across a large spatial extent. Regularly spaced, vertical features of high resistivity were interpreted as connections between the ice-cemented polygon centres and the massive ice body of Beacon Valley. Several lenses of massive ice were found in the layered permafrost sediments of Victoria Valley. The depth to the basement bedrock, inferred from the time-domain electromagnetism measurements, was over a hundred metres. This bedrock appeared to be overlain by a layer of brackish water. Regularly spaced, resistive vertical features in the near surface were interpreted as the sand wedges or cracks of the polygonal patterned ground. Due to its successful application in Victoria Valley, it is proposed that time-domain electromagnetism would be a useful geophysical method for inclusion on a future Mars mission. GEOL 490 Project, submitted in partial fulfilment of the requirements for the degree of Bachelor of Science with Combined Honours in Astronomy and Geology at the ...
author2 Nobes, David
Cottrell, Peter
format Doctoral or Postdoctoral Thesis
author Bannister, Michele T
author_facet Bannister, Michele T
author_sort Bannister, Michele T
title Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
title_short Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
title_full Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
title_fullStr Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
title_full_unstemmed Polygonal patterned ground and ancient buried ice on Mars and in Antarctica
title_sort polygonal patterned ground and ancient buried ice on mars and in antarctica
publisher Zenodo
publishDate 2007
url https://doi.org/10.5281/zenodo.1154854
genre Antarc*
Antarctica
Ice
permafrost
wedge*
genre_facet Antarc*
Antarctica
Ice
permafrost
wedge*
op_relation https://doi.org/10.5281/zenodo.1154853
https://doi.org/10.5281/zenodo.1154854
oai:zenodo.org:1154854
op_rights info:eu-repo/semantics/openAccess
Creative Commons Attribution 4.0 International
https://creativecommons.org/licenses/by/4.0/legalcode
op_doi https://doi.org/10.5281/zenodo.115485410.5281/zenodo.1154853
_version_ 1810289545278652416