Data and scripts for the RaFSIP scheme
This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper " RaFSIP: Parameterizing ice multiplication in models using a machine learning approach" , by Paraskevi Georgakaki and Athana...
Main Authors: | , |
---|---|
Format: | Other/Unknown Material |
Language: | English |
Published: |
Zenodo
2024
|
Subjects: | |
Online Access: | https://doi.org/10.5281/zenodo.10569644 |
id |
ftzenodo:oai:zenodo.org:10569644 |
---|---|
record_format |
openpolar |
spelling |
ftzenodo:oai:zenodo.org:10569644 2024-09-09T19:23:13+00:00 Data and scripts for the RaFSIP scheme Georgakaki, Paraskevi Nenes, Athanasios 2024-01-25 https://doi.org/10.5281/zenodo.10569644 eng eng Zenodo https://doi.org/10.22541/essoar.170365383.34520011/v1 https://zenodo.org/communities/epfl https://zenodo.org/communities/forces-project https://doi.org/10.5281/zenodo.10569643 https://doi.org/10.5281/zenodo.10569644 oai:zenodo.org:10569644 info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode Clouds Arctic Ice multiplication Machine learning Modeling Parameterization Cloud microphysics Random Forests info:eu-repo/semantics/other 2024 ftzenodo https://doi.org/10.5281/zenodo.1056964410.22541/essoar.170365383.34520011/v110.5281/zenodo.10569643 2024-07-26T23:32:12Z This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper " RaFSIP: Parameterizing ice multiplication in models using a machine learning approach" , by Paraskevi Georgakaki and Athanasios Nenes. RaFSIP is a data-driven parameterization designed to streamline the representation of Secondary Ice Production (SIP) in large-scale models. Preprint available on Authorea: https://doi.org/10.22541/essoar.170365383.34520011/v1 Other/Unknown Material Arctic Zenodo Arctic |
institution |
Open Polar |
collection |
Zenodo |
op_collection_id |
ftzenodo |
language |
English |
topic |
Clouds Arctic Ice multiplication Machine learning Modeling Parameterization Cloud microphysics Random Forests |
spellingShingle |
Clouds Arctic Ice multiplication Machine learning Modeling Parameterization Cloud microphysics Random Forests Georgakaki, Paraskevi Nenes, Athanasios Data and scripts for the RaFSIP scheme |
topic_facet |
Clouds Arctic Ice multiplication Machine learning Modeling Parameterization Cloud microphysics Random Forests |
description |
This repository contains microphysics routines, scripts, and processed data from the Weather Research and Forecasting (WRF) model simulations presented in the paper " RaFSIP: Parameterizing ice multiplication in models using a machine learning approach" , by Paraskevi Georgakaki and Athanasios Nenes. RaFSIP is a data-driven parameterization designed to streamline the representation of Secondary Ice Production (SIP) in large-scale models. Preprint available on Authorea: https://doi.org/10.22541/essoar.170365383.34520011/v1 |
format |
Other/Unknown Material |
author |
Georgakaki, Paraskevi Nenes, Athanasios |
author_facet |
Georgakaki, Paraskevi Nenes, Athanasios |
author_sort |
Georgakaki, Paraskevi |
title |
Data and scripts for the RaFSIP scheme |
title_short |
Data and scripts for the RaFSIP scheme |
title_full |
Data and scripts for the RaFSIP scheme |
title_fullStr |
Data and scripts for the RaFSIP scheme |
title_full_unstemmed |
Data and scripts for the RaFSIP scheme |
title_sort |
data and scripts for the rafsip scheme |
publisher |
Zenodo |
publishDate |
2024 |
url |
https://doi.org/10.5281/zenodo.10569644 |
geographic |
Arctic |
geographic_facet |
Arctic |
genre |
Arctic |
genre_facet |
Arctic |
op_relation |
https://doi.org/10.22541/essoar.170365383.34520011/v1 https://zenodo.org/communities/epfl https://zenodo.org/communities/forces-project https://doi.org/10.5281/zenodo.10569643 https://doi.org/10.5281/zenodo.10569644 oai:zenodo.org:10569644 |
op_rights |
info:eu-repo/semantics/openAccess Creative Commons Attribution 4.0 International https://creativecommons.org/licenses/by/4.0/legalcode |
op_doi |
https://doi.org/10.5281/zenodo.1056964410.22541/essoar.170365383.34520011/v110.5281/zenodo.10569643 |
_version_ |
1809763604473315328 |