Using paleolimnology to establish baseline conditions for metal contaminants in advance of proposed mining to inform a northern community-led aquatic monitoring program, Tłı̨chǫ Lands, Northwest Territories, Canada.

The Marian Watershed Stewardship Program (MWSP), a community-driven aquatic ecosystem monitoring program, was developed by the Tłı̨chǫ Government to address concerns regarding the cumulative impacts of multiple potential stressors. In particular, the MWSP aims to develop methods that will be effecti...

Full description

Bibliographic Details
Main Author: Telford, James
Format: Text
Language:English
Published: Scholars Commons @ Laurier 2019
Subjects:
Online Access:https://scholars.wlu.ca/etd/2134
https://scholars.wlu.ca/context/etd/article/3253/viewcontent/James_Telford__MSc_Thesis___Final_Copy_January_30th.pdf
Description
Summary:The Marian Watershed Stewardship Program (MWSP), a community-driven aquatic ecosystem monitoring program, was developed by the Tłı̨chǫ Government to address concerns regarding the cumulative impacts of multiple potential stressors. In particular, the MWSP aims to develop methods that will be effective for detecting potential pollution from the proposed cobalt-gold-copper-bismuth NICO mine within Tłı̨chǫ Lands. In collaboration with the MWSP, paleolimnological methods and geochemical normalization are used to establish pre-mine baselines of lake sediment metals concentrations in the Marian River watershed prior to mine development. This baseline framework can be used to assess for pollution from surficial sediment once the mine becomes operational. Stratigraphic sediment metal concentration results from four lakes are normalized to lithogenic and biogenic elements (Al, Ti, OM, Corg). The application of normalizing techniques to metals within the stratigraphic record aims to account for natural variation as a result of biogeochemical and physical processes that may affect sediment metals concentrations. Application of this method results in a set of lake- and metal-specific baselines established for four lakes. Results show metal concentrations are substantially higher in lakes on or adjacent to the ore body compared to lakes located in the surrounding granitic bedrock terrane. Temporal variations in the concentrations of many metals of concern are small, which provide values that can effectively serve as baselines for ongoing monitoring. An exception is arsenic, a metalloid of major concern, which increases variably in the latter half of the 20th century. There are multiple possible explanations for this trend, including far-field atmospheric emissions, increase in erosion of arsenic-bearing sources in the lake catchments, and/or post-depositional diagenetic mobilization in the lake sediment profile. Notably, increases in arsenic concentrations also occur in the early part of the past millennium likely indicating ...