Carbon Dioxide Exchange in a Permafrost-Dominated Boreal Wetland in the Northwest Territories, Canada

Northern boreal wetland complexes are substantial reservoirs for carbon and play a crucial role in both regional and global carbon budgets but they are showing significant signs of impact by climate change. This study examined the carbon dioxide flux of a high boreal wetland during the snowmelt and...

Full description

Bibliographic Details
Main Author: Kenward, Andrea J.
Format: Text
Language:unknown
Published: Scholars Commons @ Laurier 2010
Subjects:
Online Access:https://scholars.wlu.ca/etd/984
https://scholars.wlu.ca/context/etd/article/1983/viewcontent/MR68712.PDF
Description
Summary:Northern boreal wetland complexes are substantial reservoirs for carbon and play a crucial role in both regional and global carbon budgets but they are showing significant signs of impact by climate change. This study examined the carbon dioxide flux of a high boreal wetland during the snowmelt and growing season of 2008 in Scotty Creek Basin, located near Fort Simpson (61°18'N, 121°18'W), Northwest Territories. This basin is not only responding to shifts in atmospheric temperatures, but it is also under additional pressure from increasing permafrost degradation. A dynamic closed-system chamber was used to monitor and quantify mid-day total respiration (Rtot), gross ecosystem production (GEP), and net ecosystem exchange (NEE) at nine sites, in order to characterize and compare the gas flux gradients for three landscape units typical of the lower Liard River valley (channel fens, ombrotrophic flat bogs and peat plateaus). Each landscape unit exhibited increasing rates of Rtot and GEP for the duration of study. Instantaneous rates of Rtot and NEE were highest in the permafrost plateau and channel fen, while the flat bog remained consistently low throughout the season. While there was significant variation in magnitude, the results demonstrated relatively similar temporal variability between landscapes. Temporal and spatial variability in CO2 exchange was further examined through the relationships with local environmental conditions: photo synthetically active radiation, air temperature, soil temperature, soil moisture, and frost table and water table depth. Light response curves derived using an exponential model showed GEP was primarily driven by photosynthetically active radiation, yet significant scatter suggested additional environmental influences. Differential development in Rtot appeared to be most influenced by temperature and moisture regimes. Ambient air temperature, and soil and water temperatures at 20 cm all showed strong positive correlations with Rtot, while decreasing frost and water table depth, ...